返回 登录
0

【CSDN AI 周刊】No. 005 | 高精地图在无人驾驶中的应用

图片描述

【CSDN AI 周刊】每周一早八点为您奉上新鲜出炉的AI早餐。订阅请点击这里

若您有希望与业界分享的AI实施案例、资料整理、学习笔记、趣闻妙谈,请发送邮件至wangyi@csdn.net,期待您的声音。


图片描述


高精地图在无人驾驶中的应用

高精地图是无人驾驶核心技术之一,精准的地图对无人车定位、导航与控制,以及安全至关重要。 本文是“无人驾驶技术系列”第七篇,首先介绍高精地图与传统地图的区别,然后介绍其特点及制作过程。在了解高精地图基础知识后,探索其在无人驾驶场景中的应用。

从感知机到人工神经网络

感知机(Perceptron)算法是一种很好的二分类在线算法,它要求模型是线性可分的。感知机对应于在输入的空间中将实例划分成正负样本,分离它们的是分离超平面,即判别的模型。

本文从感知机学习策略及其推导过程入手,详解感知机学习算法及其对偶形式、感知机的缺点,进而介绍人工神经网络、其激活函数、以及过拟合问题。

Theano tutorial和卷积神经网络的Theano实现

Theano是一个Python库,它可以让你定义,优化以及对数学表达式求值,尤其是多维数组(numpy的ndarray)的表达式的求值。对于解决大量数据的问题,使用Theano可能获得与手工用C实现差不多的性能。另外通过利用GPU,它能获得比CPU上的C实现快很多数量级。

Theano把计算机代数系统(CAS)和优化的编译器结合在一起。 它也可以对许多数学操作生成自定义的c代码。这种CAS和优化编译的组合对于有复杂数学表达式重复的被求值并且求值速度很关键的问题是非常有用的。对于许多不同的表达式只求值一次的场景,Theano也能最小化编译/分析的次数,但是仍然可以提供诸如自动差分这样的符号计算的特性。

LightRNN:深度学习之以小见大

历经沉浮,AI终去颓势,一扫六合,雄踞当今IT江湖之巅,江湖帮派无论大小皆以AI为荣。然帮派虽众,论及武功秘籍,江湖中只有一个传说,“深度学习,AI至尊,号令天下,莫敢不从,RL不出,谁与争锋”。江湖公认,深度学习,无他,唯大尔。深度学习之大,境界有三重,大数据、大模型、大计算,传言唯有修至三重境者,方能领会深度学习之真谛。然成也萧何、败也萧何,深度学习,因大而崛起闻名于江湖,亦因大而阻碍其一统江湖的步伐:唯有大型帮派,方有财力人力体会三重境之美妙,而限于财力人力小门小派往往不能承受深度学习之大。所幸江湖儿女多豪杰,我辈AI中人多志士,诸多英雄好汉前赴后继,不断钻研,力图以小见大,使得深度学习之大能够返璞归真。本文所要讲述的正是发生在M帮AI部门亚洲分舵的一小段故事。

好玩的文本生成

文本生成是比较学术的说法,通常在媒体上见到的“机器人写作”、“人工智能写作”、“自动对话生成”、“机器人写古诗”等,都属于文本生成的范畴。2016年里,关于文本生成有许多的新闻事件,引起了学术界以外对这一话题的广泛关注。

2016年3月3日,MIT CSAIL【1】报道了,MIT计算机科学与人工智能实验室的一位博士后开发了一款推特机器人,叫DeepDrumpf,它可以模仿当时的美国总统候选人Donald Trump来发文。

2016年3月22日,日本共同社报道,由人工智能创作的小说作品《机器人写小说的那一天》入围了第三届星新一文学奖的初审。这一奖项以被誉为“日本微型小说之父”的科幻作家星新一命名。提交小说的是“任性的人工智能之我是作家”(简称“我是作家”)团队【2】。

2016年5月,美国多家媒体【3】【4】报道,谷歌的人工智能项目在学习了上千本浪漫小说之后写出后现代风格的诗歌。

基于人工智能的文本生成真的已经达到媒体宣传的水平了吗?这些事件背后是怎样的人工智能技术?关于机器人写小说的工作,我们会在另一篇文章《会有那么一天,机器人可以写小说吗?》里进行深入的讨论,他们的工作更多的是基于模板的生成。在这篇文章里,我们主要想通过三篇文章介绍另一大类方法,即基于统计的文本生成。

2016年 AI 技术发展综述

2016年对于AI发展来看,是非常重要的一年。AI的各个领域都在蓬勃发展,同时,这一年,我们也目睹了一些在AI发展史上的标志性事件,比如阿尔法围棋战胜人类棋手,语音识别技术达到人类水平,各大云服务平台公司争先恐后进入AI平台开发领域。本文希望能够从几个关键领域和发展方向,在繁多的科技进步中,理清关键信息,对过去一年的经典技术发展做出点评,给读者一个清晰而简单的信息参考。


【CSDN_AI】热衷分享

扫码关注获得更多业内领先案例

图片描述

评论