pytorch 神经网络
pytorch深度学习RNN循环神经网络pytorchRNN后面的神经网络会基于前面神经网络的贡献可以接受更广泛的时间序列结构输入LSTM RNNlong short-term memory(长短期记忆)普通rnn会出现最初始的信息被忽略,在反向传播的时候减小最开始时候的信息。而造成梯度消失,也叫做梯度弥散也有可能造成一开始的梯度改变之后无穷大,称为梯度爆炸因此,普通rnn无法解决轴点记忆的问题l
·
pytorch深度学习
RNN循环神经网络pytorch
RNN
后面的神经网络会基于前面神经网络的贡献
可以接受更广泛的时间序列结构输入
LSTM RNN
long short-term memory(长短期记忆)
普通rnn会出现最初始的信息被忽略,在反向传播的时候减小最开始时候的信息。
而造成梯度消失,也叫做梯度弥散
也有可能造成一开始的梯度改变之后无穷大,称为梯度爆炸
因此,普通rnn无法解决轴点记忆的问题
lstm rnn中多了输入,输出,忘记控制器
根据输入输出程度的重要性,加入循环神经网络中
pytorch实现
分类问题
import torch
from torch import nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
# torch.manual_seed(1) # reproducible
# Hyper Parameters
EPOCH = 1 # train the training data n times, to save time, we just train 1 epoch
BATCH_SIZE = 64
TIME_STEP = 28 # rnn time step / image height
INPUT_SIZE = 28 # rnn input size / image width
LR = 0.01 # learning rate
DOWNLOAD_MNIST = True # set to True if haven't download the data
# Mnist digital dataset
train_data = dsets.MNIST(
root='./mnist/',
train=True, # this is training data
transform=transforms.ToTensor(), # Converts a PIL.Image or numpy.ndarray to
# torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
download=DOWNLOAD_MNIST, # download it if you don't have it
)
# plot one example
print(train_data.train_data.size()) # (60000, 28, 28)
print(train_data.train_labels.size()) # (60000)
plt.imshow(train_data.train_data[0].numpy(), cmap='gray')
plt.title('%i' % train_data.train_labels[0])
plt.show()
# Data Loader for easy mini-batch return in training
train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
# convert test data into Variable, pick 2000 samples to speed up testing
test_data = dsets.MNIST(root='./mnist/', train=False, transform=transforms.ToTensor())
test_x = test_data.test_data.type(torch.FloatTensor)[:2000]/255. # shape (2000, 28, 28) value in range(0,1)
test_y = test_data.test_labels.numpy()[:2000] # covert to numpy array
class RNN(nn.Module):
def __init__(self):
super(RNN, self).__init__()
self.rnn = nn.LSTM( # if use nn.RNN(), it hardly learns
input_size=INPUT_SIZE,
hidden_size=64, # rnn hidden unit
num_layers=1, # number of rnn layer
batch_first=True, # input & output will has batch size as 1s dimension. e.g. (batch, time_step, input_size)
)
self.out = nn.Linear(64, 10)
def forward(self, x):
# x shape (batch, time_step, input_size)
# r_out shape (batch, time_step, output_size)
# h_n shape (n_layers, batch, hidden_size)
# h_c shape (n_layers, batch, hidden_size)
r_out, (h_n, h_c) = self.rnn(x, None) # None represents zero initial hidden state
# choose r_out at the last time step
out = self.out(r_out[:, -1, :])
return out
rnn = RNN()
print(rnn)
out
RNN(
(rnn): LSTM(28, 64, batch_first=True)
(out): Linear(in_features=64, out_features=10, bias=True)
)
实现优化、训练
optimizer = torch.optim.Adam(rnn.parameters(), lr=LR) # optimize all cnn parameters
loss_func = nn.CrossEntropyLoss() # the target label is not one-hotted
# training and testing
for epoch in range(EPOCH):
for step, (b_x, b_y) in enumerate(train_loader): # gives batch data
b_x = b_x.view(-1, 28, 28) # reshape x to (batch, time_step, input_size)
output = rnn(b_x) # rnn output
loss = loss_func(output, b_y) # cross entropy loss
optimizer.zero_grad() # clear gradients for this training step
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients
if step % 50 == 0:
test_output = rnn(test_x) # (samples, time_step, input_size)
pred_y = torch.max(test_output, 1)[1].data.numpy()
accuracy = float((pred_y == test_y).astype(int).sum()) / float(test_y.size)
print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)
# print 10 predictions from test data
test_output = rnn(test_x[:10].view(-1, 28, 28))
pred_y = torch.max(test_output, 1)[1].data.numpy()
print(pred_y, 'prediction number')
print(test_y[:10], 'real number')
out
Epoch: 0 | train loss: 2.2896 | test accuracy: 0.12
Epoch: 0 | train loss: 0.8098 | test accuracy: 0.60
Epoch: 0 | train loss: 0.6983 | test accuracy: 0.73
Epoch: 0 | train loss: 0.5486 | test accuracy: 0.81
Epoch: 0 | train loss: 0.7209 | test accuracy: 0.85
Epoch: 0 | train loss: 0.2399 | test accuracy: 0.87
Epoch: 0 | train loss: 0.4179 | test accuracy: 0.90
Epoch: 0 | train loss: 0.5278 | test accuracy: 0.88
Epoch: 0 | train loss: 0.3201 | test accuracy: 0.90
Epoch: 0 | train loss: 0.1950 | test accuracy: 0.92
Epoch: 0 | train loss: 0.2301 | test accuracy: 0.92
Epoch: 0 | train loss: 0.1683 | test accuracy: 0.94
Epoch: 0 | train loss: 0.1188 | test accuracy: 0.93
Epoch: 0 | train loss: 0.0566 | test accuracy: 0.95
Epoch: 0 | train loss: 0.0941 | test accuracy: 0.94
Epoch: 0 | train loss: 0.3501 | test accuracy: 0.95
Epoch: 0 | train loss: 0.0342 | test accuracy: 0.93
Epoch: 0 | train loss: 0.0753 | test accuracy: 0.96
Epoch: 0 | train loss: 0.1507 | test accuracy: 0.96
[7 2 1 0 4 1 4 9 6 9] prediction number
[7 2 1 0 4 1 4 9 5 9] real number
回归问题
import torch
from torch import nn
import numpy as np
import matplotlib.pyplot as plt
# torch.manual_seed(1) # reproducible
# Hyper Parameters
TIME_STEP = 10 # rnn time step
INPUT_SIZE = 1 # rnn input size
LR = 0.02 # learning rate
# show data
steps = np.linspace(0, np.pi * 2, 100, dtype=np.float32) # float32 for converting torch FloatTensor
x_np = np.sin(steps)
y_np = np.cos(steps)
plt.plot(steps, y_np, 'r-', label='target (cos)')
plt.plot(steps, x_np, 'b-', label='input (sin)')
plt.legend(loc='best')
plt.show()
class RNN(nn.Module):
def __init__(self):
super(RNN, self).__init__()
self.rnn = nn.RNN(
input_size=INPUT_SIZE,
hidden_size=32, # rnn hidden unit
num_layers=1, # number of rnn layer
batch_first=True, # input & output will has batch size as 1s dimension. e.g. (batch, time_step, input_size)
)
self.out = nn.Linear(32, 1)
def forward(self, x, h_state):
# x (batch, time_step, input_size)
# h_state (n_layers, batch, hidden_size)
# r_out (batch, time_step, hidden_size)
r_out, h_state = self.rnn(x, h_state)
outs = [] # save all predictions
for time_step in range(r_out.size(1)): # calculate output for each time step
outs.append(self.out(r_out[:, time_step, :]))
return torch.stack(outs, dim=1), h_state
# instead, for simplicity, you can replace above codes by follows
# r_out = r_out.view(-1, 32)
# outs = self.out(r_out)
# outs = outs.view(-1, TIME_STEP, 1)
# return outs, h_state
# or even simpler, since nn.Linear can accept inputs of any dimension
# and returns outputs with same dimension except for the last
# outs = self.out(r_out)
# return outs
rnn = RNN()
print(rnn)
optimizer = torch.optim.Adam(rnn.parameters(), lr=LR) # optimize all cnn parameters
loss_func = nn.MSELoss()
h_state = None # for initial hidden state
plt.figure(1, figsize=(12, 5))
plt.ion() # continuously plot
for step in range(100):
start, end = step * np.pi, (step + 1) * np.pi # time range
# use sin predicts cos
steps = np.linspace(start, end, TIME_STEP, dtype=np.float32,
endpoint=False) # float32 for converting torch FloatTensor
x_np = np.sin(steps)
y_np = np.cos(steps)
x = torch.from_numpy(x_np[np.newaxis, :, np.newaxis]) # shape (batch, time_step, input_size)
y = torch.from_numpy(y_np[np.newaxis, :, np.newaxis])
prediction, h_state = rnn(x, h_state) # rnn output
# !! next step is important !!
h_state = h_state.data # repack the hidden state, break the connection from last iteration
loss = loss_func(prediction, y) # calculate loss
optimizer.zero_grad() # clear gradients for this training step
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients
# plotting
plt.plot(steps, y_np.flatten(), 'r-')
plt.plot(steps, prediction.data.numpy().flatten(), 'b-')
plt.draw();
plt.pause(0.05)
plt.ioff()
plt.show()
out
RNN(
(rnn): RNN(1, 32, batch_first=True)
(out): Linear(in_features=32, out_features=1, bias=True)
)
AutoEncoder(自编码)
先将原数据压缩,在进行解压得到输出
再将输出进行反向传递进行优化
是一种非监督学习,超过了PCA
压缩后得到的是编码器,掌握着原数据的精髓
强化学习
- Deep Q Network(DQN)
- GAN(无意义的随机数生成,互相提升)
-
- generator生成数据,discriminator进行判别
torch是动态的
可以采用GPU加速
缓解过拟合(Over fitting)
增加一个drop层
net_dropped = torch.nn.Sequential(
torch.nn.Linear(1, N_HIDDEN),
torch.nn.Dropout(0.5), # 随即屏蔽掉一半的点,实现缓解过拟合
torch.nn.ReLU(),
)
批标准化(Batch Normalization)
激励函数对较大数不敏感
这不仅仅在输入层,也在隐藏层中发生
批标准化在激励函数与下一层之间
分为标准化工序,反标准化工序
def __init__(self, batch_normalization=False):
super(Net, self).__init__()
self.do_bn = batch_normalization
self.fns = []
self.bns = []
self.bn_input = nn.BatchNormal1d(1, momentum=0.5)
for i in range(N_HIDDEN):
input_size = 1 if i == 0 else 10
fc = nn.Linear(input_size, 10)
setattr(self, 'fc%i' % i, fc) # important
self._set_init()
self.predict = nn.Linear(10, 1)
self._set_init(self.predict)
更多推荐
所有评论(0)