机器学习--SVM
在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别、分类、以及回归分析。原理简介SVM方法是通过一个非线性映射p,把样本空间映射到一个高维乃至无穷维的特征空间中(Hilbert空间),使得在原来的样本空间中非线性可分的问题转化为在特征空间中的线性可分的问题.简单地说,就是升维和线性化.升维,就
在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别、分类、以及回归分析。
原理简介
SVM方法是通过一个非线性映射p,把样本空间映射到一个高维乃至无穷维的特征空间中(Hilbert空间),使得在原来的样本空间中非线性可分的问题转化为在特征空间中的线性可分的问题.简单地说,就是升维和线性化.升维,就是把样本向高维空间做映射,一般情况下这会增加计算的复杂性,甚至会引起"维数灾难",因而人们很少问津.但是作为分类、回归等问题来说,很可能在低维样本空间无法线性处理的样本集,在高维特征空间中却可以通过一个线性超平面实现线性划分(或回归).一般的升维都会带来计算的复杂化,SVM方法巧妙地解决了这个难题:应用核函数的展开定理,就不需要知道非线性映射的显式表达式;由于是在高维特征空间中建立线性学习机,所以与线性模型相比,不但几乎不增加计算的复杂性,而且在某种程度上避免了"维数灾难".这一切要归功于核函数的展开和计算理论.
选择不同的核函数,可以生成不同的SVM,常用的核函数有以下4种:
⑴线性核函数K(x,y)=x·y;
⑵多项式核函数K(x,y)=[(x·y)+1]^d;
⑶径向基函数K(x,y)=exp(-|x-y|^2/d^2)
⑷二层神经网络核函数K(x,y)=tanh(a(x·y)+b).
一般特征
参考: 支持向量机通俗导论
int labels[4] = {1, -1, -1, -1}; //创建标签
Mat labelsMat(4, 1, CV_32SC1, labels); //创建矩阵
float trainingData[4][2] = { {501, 10}, {255, 10}, {501, 255}, {10, 501} };//训练数据集
Mat trainingDataMat(4, 2, CV_32FC1, trainingData);
m1::SVM::Params params;
params.svmType = SVM::C_SVC; //参数类型
params.kernelType = SVM::LINEAR; //核类型
params.termCrit = TermCriteria(TermCriteria::MAX_ITER, 100, 1e-6);
Ptr<SVM> svm = StatModel::train<SVM>(trainingDataMat, ROW_SAMPLE, labelsMat, params);
Vec3b green(0,255,0), blue (255,0,0);
4、显示训练集数据
int thickness = -1;
int lineType = 8;
circle( image, Point(501, 10), 5, Scalar( 0, 0, 0), thickness, lineType);
circle( image, Point(255, 10), 5, Scalar(255, 255, 255), thickness, lineType);
circle( image, Point(501, 255), 5, Scalar(255, 255, 255), thickness, lineType);
circle( image, Point( 10, 501), 5, Scalar(255, 255, 255), thickness, lineType);
5、显示支持向量
thickness = 2;
lineType = 8;
Mat sv = svm->getSupportVectors();
for (int i = 0; i < sv.rows; ++i)
{
const float* v = sv.ptr<float>(i);
circle( image, Point( (int) v[0], (int) v[1]), 6, Scalar(128, 128, 128), thickness, lineType);
}
Demo2:VS2013+opencv2.4.10实现物体分类。
数据集有三类Corrdior、Office 、Toilet共760张640x480图片。
测试集:Corrdior-284、Office -102、Toilet-374
训练集:Corrdior-70、Office-47 、Toilet-63
源码:SVM物体分类
更多推荐
所有评论(0)