YOLOv3(1)数据处理
前言今天我们开始学习YOLOv3,这仍然是一种目标检测方法,原理大家可以看这位前辈的博文https://blog.csdn.net/leviopku/article/details/82660381,先看整体结构,这图来自于前辈的博文,已点赞。但是我们今天一起学习的是数据处理部分,现在我们先看一下整体代码:#! /usr/bin/env python# coding=utf-8#===...
前言
今天我们开始学习YOLOv3,这仍然是一种目标检测方法,原理大家可以看这位前辈的博文https://blog.csdn.net/leviopku/article/details/82660381,先看整体结构,这图来自于前辈的博文,已点赞。
但是我们今天一起学习的是数据处理部分,现在我们先看一下整体代码:
#! /usr/bin/env python
# coding=utf-8
#================================================================
# Copyright (C) 2019 * Ltd. All rights reserved.
#
# Editor : VIM
# File name : dataset.py
# Author : YunYang1994
# Created date: 2019-03-15 18:05:03
# Description :
#
#================================================================
import os
import cv2
import random
import numpy as np
import tensorflow as tf
import core.utils as utils
from core.config import cfg
class Dataset(object):
"""implement Dataset here"""
def __init__(self, dataset_type):
self.annot_path = cfg.TRAIN.ANNOT_PATH if dataset_type == 'train' else cfg.TEST.ANNOT_PATH
self.input_sizes = cfg.TRAIN.INPUT_SIZE if dataset_type == 'train' else cfg.TEST.INPUT_SIZE
self.batch_size = cfg.TRAIN.BATCH_SIZE if dataset_type == 'train' else cfg.TEST.BATCH_SIZE
self.data_aug = cfg.TRAIN.DATA_AUG if dataset_type == 'train' else cfg.TEST.DATA_AUG
self.train_input_sizes = cfg.TRAIN.INPUT_SIZE
self.strides = np.array(cfg.YOLO.STRIDES)
self.classes = utils.read_class_names(cfg.YOLO.CLASSES)
self.num_classes = len(self.classes)
self.anchors = np.array(utils.get_anchors(cfg.YOLO.ANCHORS))
self.anchor_per_scale = cfg.YOLO.ANCHOR_PER_SCALE
self.max_bbox_per_scale = 150
self.annotations = self.load_annotations(dataset_type)
self.num_samples = len(self.annotations)
self.num_batchs = int(np.ceil(self.num_samples / self.batch_size))
self.batch_count = 0
def load_annotations(self, dataset_type):
with open(self.annot_path, 'r') as f:
txt = f.readlines()
annotations = [line.strip() for line in txt if len(line.strip().split()[1:]) != 0]
np.random.shuffle(annotations)
return annotations
def __iter__(self):
return self
def __next__(self):
with tf.device('/cpu:0'):
self.train_input_size = random.choice(self.train_input_sizes)
self.train_output_sizes = self.train_input_size // self.strides
batch_image = np.zeros((self.batch_size, self.train_input_size, self.train_input_size, 3))
batch_label_sbbox = np.zeros((self.batch_size, self.train_output_sizes[0], self.train_output_sizes[0],
self.anchor_per_scale, 5 + self.num_classes))
batch_label_mbbox = np.zeros((self.batch_size, self.train_output_sizes[1], self.train_output_sizes[1],
self.anchor_per_scale, 5 + self.num_classes))
batch_label_lbbox = np.zeros((self.batch_size, self.train_output_sizes[2], self.train_output_sizes[2],
self.anchor_per_scale, 5 + self.num_classes))
batch_sbboxes = np.zeros((self.batch_size, self.max_bbox_per_scale, 4))
batch_mbboxes = np.zeros((self.batch_size, self.max_bbox_per_scale, 4))
batch_lbboxes = np.zeros((self.batch_size, self.max_bbox_per_scale, 4))
num = 0
if self.batch_count < self.num_batchs:
while num < self.batch_size:
index = self.batch_count * self.batch_size + num
if index >= self.num_samples: index -= self.num_samples
annotation = self.annotations[index]
image, bboxes = self.parse_annotation(annotation)
label_sbbox, label_mbbox, label_lbbox, sbboxes, mbboxes, lbboxes = self.preprocess_true_boxes(bboxes)
batch_image[num, :, :, :] = image
batch_label_sbbox[num, :, :, :, :] = label_sbbox
batch_label_mbbox[num, :, :, :, :] = label_mbbox
batch_label_lbbox[num, :, :, :, :] = label_lbbox
batch_sbboxes[num, :, :] = sbboxes
batch_mbboxes[num, :, :] = mbboxes
batch_lbboxes[num, :, :] = lbboxes
num += 1
self.batch_count += 1
return batch_image, batch_label_sbbox, batch_label_mbbox, batch_label_lbbox, \
batch_sbboxes, batch_mbboxes, batch_lbboxes
else:
self.batch_count = 0
np.random.shuffle(self.annotations)
raise StopIteration
def random_horizontal_flip(self, image, bboxes):
if random.random() < 0.5:
_, w, _ = image.shape
image = image[:, ::-1, :]
bboxes[:, [0,2]] = w - bboxes[:, [2,0]]
return image, bboxes
def random_crop(self, image, bboxes):
if random.random() < 0.5:
h, w, _ = image.shape
max_bbox = np.concatenate([np.min(bboxes[:, 0:2], axis=0), np.max(bboxes[:, 2:4], axis=0)], axis=-1)
max_l_trans = max_bbox[0]
max_u_trans = max_bbox[1]
max_r_trans = w - max_bbox[2]
max_d_trans = h - max_bbox[3]
crop_xmin = max(0, int(max_bbox[0] - random.uniform(0, max_l_trans)))
crop_ymin = max(0, int(max_bbox[1] - random.uniform(0, max_u_trans)))
crop_xmax = max(w, int(max_bbox[2] + random.uniform(0, max_r_trans)))
crop_ymax = max(h, int(max_bbox[3] + random.uniform(0, max_d_trans)))
image = image[crop_ymin : crop_ymax, crop_xmin : crop_xmax]
bboxes[:, [0, 2]] = bboxes[:, [0, 2]] - crop_xmin
bboxes[:, [1, 3]] = bboxes[:, [1, 3]] - crop_ymin
return image, bboxes
def random_translate(self, image, bboxes):
if random.random() < 0.5:
h, w, _ = image.shape
max_bbox = np.concatenate([np.min(bboxes[:, 0:2], axis=0), np.max(bboxes[:, 2:4], axis=0)], axis=-1)
max_l_trans = max_bbox[0]
max_u_trans = max_bbox[1]
max_r_trans = w - max_bbox[2]
max_d_trans = h - max_bbox[3]
tx = random.uniform(-(max_l_trans - 1), (max_r_trans - 1))
ty = random.uniform(-(max_u_trans - 1), (max_d_trans - 1))
M = np.array([[1, 0, tx], [0, 1, ty]])
image = cv2.warpAffine(image, M, (w, h))
bboxes[:, [0, 2]] = bboxes[:, [0, 2]] + tx
bboxes[:, [1, 3]] = bboxes[:, [1, 3]] + ty
return image, bboxes
def parse_annotation(self, annotation):
line = annotation.split()
image_path = line[0]
if not os.path.exists(image_path):
raise KeyError("%s does not exist ... " %image_path)
image = np.array(cv2.imread(image_path))
bboxes = np.array([list(map(lambda x: int(float(x)), box.split(','))) for box in line[1:]])
if self.data_aug:
image, bboxes = self.random_horizontal_flip(np.copy(image), np.copy(bboxes))
image, bboxes = self.random_crop(np.copy(image), np.copy(bboxes))
image, bboxes = self.random_translate(np.copy(image), np.copy(bboxes))
image, bboxes = utils.image_preporcess(np.copy(image), [self.train_input_size, self.train_input_size], np.copy(bboxes))
return image, bboxes
def bbox_iou(self, boxes1, boxes2):
boxes1 = np.array(boxes1)
boxes2 = np.array(boxes2)
boxes1_area = boxes1[..., 2] * boxes1[..., 3]
boxes2_area = boxes2[..., 2] * boxes2[..., 3]
boxes1 = np.concatenate([boxes1[..., :2] - boxes1[..., 2:] * 0.5,
boxes1[..., :2] + boxes1[..., 2:] * 0.5], axis=-1)
boxes2 = np.concatenate([boxes2[..., :2] - boxes2[..., 2:] * 0.5,
boxes2[..., :2] + boxes2[..., 2:] * 0.5], axis=-1)
left_up = np.maximum(boxes1[..., :2], boxes2[..., :2])
right_down = np.minimum(boxes1[..., 2:], boxes2[..., 2:])
inter_section = np.maximum(right_down - left_up, 0.0)
inter_area = inter_section[..., 0] * inter_section[..., 1]
union_area = boxes1_area + boxes2_area - inter_area
return inter_area / union_area
def preprocess_true_boxes(self, bboxes):
label = [np.zeros((self.train_output_sizes[i], self.train_output_sizes[i], self.anchor_per_scale,
5 + self.num_classes)) for i in range(3)]
bboxes_xywh = [np.zeros((self.max_bbox_per_scale, 4)) for _ in range(3)]
bbox_count = np.zeros((3,))
for bbox in bboxes:
bbox_coor = bbox[:4]
bbox_class_ind = bbox[4]
onehot = np.zeros(self.num_classes, dtype=np.float)
onehot[bbox_class_ind] = 1.0
uniform_distribution = np.full(self.num_classes, 1.0 / self.num_classes)
deta = 0.01
smooth_onehot = onehot * (1 - deta) + deta * uniform_distribution
bbox_xywh = np.concatenate([(bbox_coor[2:] + bbox_coor[:2]) * 0.5, bbox_coor[2:] - bbox_coor[:2]], axis=-1)
bbox_xywh_scaled = 1.0 * bbox_xywh[np.newaxis, :] / self.strides[:, np.newaxis]
iou = []
exist_positive = False
for i in range(3):
anchors_xywh = np.zeros((self.anchor_per_scale, 4))
anchors_xywh[:, 0:2] = np.floor(bbox_xywh_scaled[i, 0:2]).astype(np.int32) + 0.5
anchors_xywh[:, 2:4] = self.anchors[i]
iou_scale = self.bbox_iou(bbox_xywh_scaled[i][np.newaxis, :], anchors_xywh)
iou.append(iou_scale)
iou_mask = iou_scale > 0.3
if np.any(iou_mask):
xind, yind = np.floor(bbox_xywh_scaled[i, 0:2]).astype(np.int32)
label[i][yind, xind, iou_mask, :] = 0
label[i][yind, xind, iou_mask, 0:4] = bbox_xywh
label[i][yind, xind, iou_mask, 4:5] = 1.0
label[i][yind, xind, iou_mask, 5:] = smooth_onehot
bbox_ind = int(bbox_count[i] % self.max_bbox_per_scale)
bboxes_xywh[i][bbox_ind, :4] = bbox_xywh
bbox_count[i] += 1
exist_positive = True
if not exist_positive:
best_anchor_ind = np.argmax(np.array(iou).reshape(-1), axis=-1)
best_detect = int(best_anchor_ind / self.anchor_per_scale)
best_anchor = int(best_anchor_ind % self.anchor_per_scale)
xind, yind = np.floor(bbox_xywh_scaled[best_detect, 0:2]).astype(np.int32)
label[best_detect][yind, xind, best_anchor, :] = 0
label[best_detect][yind, xind, best_anchor, 0:4] = bbox_xywh
label[best_detect][yind, xind, best_anchor, 4:5] = 1.0
label[best_detect][yind, xind, best_anchor, 5:] = smooth_onehot
bbox_ind = int(bbox_count[best_detect] % self.max_bbox_per_scale)
bboxes_xywh[best_detect][bbox_ind, :4] = bbox_xywh
bbox_count[best_detect] += 1
label_sbbox, label_mbbox, label_lbbox = label
sbboxes, mbboxes, lbboxes = bboxes_xywh
return label_sbbox, label_mbbox, label_lbbox, sbboxes, mbboxes, lbboxes
def __len__(self):
return self.num_batchs
为神魔要将这块呢,首先我们可以看到在代码的train.py的第34,35行调用了Dataset(),也就是说再输入网络之前要先进入这个数据处理函数如self.trainset = Dataset(‘train’) 。
load_annotations()
前面的代码可以看出除了基础参数定义有这么一句函数:
self.annotations = self.load_annotations(dataset_type)
让我们看一下定义:
def load_annotations(self, dataset_type):
with open(self.annot_path, 'r') as f:
txt = f.readlines()
annotations = [line.strip() for line in txt if len(line.strip().split()[1:]) != 0]
np.random.shuffle(annotations)
return annotations
这一个函数的作用是读取函数信息而且随机打乱顺序,图像信息格式:像路径+空格+标记框信息(x1,y1,x2,y2,itype)。
然后让我们看一下核心函数:
next(self)
1> tf.device()
这个函数在文本检测的算法中几乎都有涉及到,主要作用是指定模型运行的具体设备,可以指定运行在GPU还是CUP上,以及哪块GPU上。
self.train_input_size = random.choice(self.train_input_sizes)
self.train_output_sizes = self.train_input_size // self.strides
batch_image = np.zeros((self.batch_size, self.train_input_size, self.train_input_size, 3))
batch_label_sbbox = np.zeros((self.batch_size, self.train_output_sizes[0], self.train_output_sizes[0],
self.anchor_per_scale, 5 + self.num_classes))
batch_label_mbbox = np.zeros((self.batch_size, self.train_output_sizes[1], self.train_output_sizes[1],
self.anchor_per_scale, 5 + self.num_classes))
batch_label_lbbox = np.zeros((self.batch_size, self.train_output_sizes[2], self.train_output_sizes[2],
self.anchor_per_scale, 5 + self.num_classes))
batch_sbboxes = np.zeros((self.batch_size, self.max_bbox_per_scale, 4))
batch_mbboxes = np.zeros((self.batch_size, self.max_bbox_per_scale, 4))
batch_lbboxes = np.zeros((self.batch_size, self.max_bbox_per_scale, 4))
这一段是对输入输出尺寸的设定,第一句是随机性选择一个训练图像的尺寸,第二句是尺寸除以32/16/8得到输出图像尺寸,第三句是根据输入尺寸构造输入图像格式,然后根据刚才除以倍数得到的输出尺寸构建三种标签输出格式,格式为:1nn385这里说一下,85是类别数80+4坐标+1置信度。最后三句同样也是用三种不同尺寸构建的输出尺寸。
num = 0
if self.batch_count < self.num_batchs:
while num < self.batch_size:
index = self.batch_count * self.batch_size + num
if index >= self.num_samples: index -= self.num_samples
annotation = self.annotations[index]
image, bboxes = self.parse_annotation(annotation)
label_sbbox, label_mbbox, label_lbbox, sbboxes, mbboxes, lbboxes = self.preprocess_true_boxes(bboxes)
batch_image[num, :, :, :] = image
batch_label_sbbox[num, :, :, :, :] = label_sbbox
batch_label_mbbox[num, :, :, :, :] = label_mbbox
batch_label_lbbox[num, :, :, :, :] = label_lbbox
batch_sbboxes[num, :, :] = sbboxes
batch_mbboxes[num, :, :] = mbboxes
batch_lbboxes[num, :, :] = lbboxes
num += 1
self.batch_count += 1
return batch_image, batch_label_sbbox, batch_label_mbbox, batch_label_lbbox, \
batch_sbboxes, batch_mbboxes, batch_lbboxes
else:
self.batch_count = 0
np.random.shuffle(self.annotations)
raise StopIteration
首先是前6句,前六句实现的是获取图像索引,并且计数原则是不超过规定数值,超过则剔除,不超过则通过索引获得图像信息。
image, bboxes = self.parse_annotation(annotation)
label_sbbox, label_mbbox, label_lbbox, sbboxes, mbboxes, lbboxes = self.preprocess_true_boxes(bboxes)
先看第一句:
def parse_annotation(self, annotation):
line = annotation.split()
image_path = line[0]
if not os.path.exists(image_path):
raise KeyError("%s does not exist ... " %image_path)
image = np.array(cv2.imread(image_path))
bboxes = np.array([list(map(lambda x: int(float(x)), box.split(','))) for box in line[1:]])
if self.data_aug:
image, bboxes = self.random_horizontal_flip(np.copy(image), np.copy(bboxes))
image, bboxes = self.random_crop(np.copy(image), np.copy(bboxes))
image, bboxes = self.random_translate(np.copy(image), np.copy(bboxes))
image, bboxes = utils.image_preporcess(np.copy(image), [self.train_input_size, self.train_input_size], np.copy(bboxes))
return image, bboxes
plit只适合简单的字符分割,这是做图像处理时经常用到的函数,然后判断图像路径的存在性,存在则通过OpenCV读入分别存为图像和坐标图像框坐标信息,然后做了三个操作:
image, bboxes = self.random_horizontal_flip(np.copy(image), np.copy(bboxes))
image, bboxes = self.random_crop(np.copy(image), np.copy(bboxes))
image, bboxes = self.random_translate(np.copy(image), np.copy(bboxes))
def random_horizontal_flip(self, image, bboxes):
if random.random() < 0.5:
_, w, _ = image.shape
image = image[:, ::-1, :]
bboxes[:, [0,2]] = w - bboxes[:, [2,0]]
return image, bboxes
这是随机翻转图像和文本框,如果随机数小于0.5则翻转。
def random_crop(self, image, bboxes):
if random.random() < 0.5:
h, w, _ = image.shape
max_bbox = np.concatenate([np.min(bboxes[:, 0:2], axis=0), np.max(bboxes[:, 2:4], axis=0)], axis=-1)
max_l_trans = max_bbox[0]
max_u_trans = max_bbox[1]
max_r_trans = w - max_bbox[2]
max_d_trans = h - max_bbox[3]
crop_xmin = max(0, int(max_bbox[0] - random.uniform(0, max_l_trans)))
crop_ymin = max(0, int(max_bbox[1] - random.uniform(0, max_u_trans)))
crop_xmax = max(w, int(max_bbox[2] + random.uniform(0, max_r_trans)))
crop_ymax = max(h, int(max_bbox[3] + random.uniform(0, max_d_trans)))
image = image[crop_ymin : crop_ymax, crop_xmin : crop_xmax]
bboxes[:, [0, 2]] = bboxes[:, [0, 2]] - crop_xmin
bboxes[:, [1, 3]] = bboxes[:, [1, 3]] - crop_ymin
return image, bboxes
这块是随机数若果小于0.5进行随机裁剪。
def random_translate(self, image, bboxes):
if random.random() < 0.5:
h, w, _ = image.shape
max_bbox = np.concatenate([np.min(bboxes[:, 0:2], axis=0), np.max(bboxes[:, 2:4], axis=0)], axis=-1)
max_l_trans = max_bbox[0]
max_u_trans = max_bbox[1]
max_r_trans = w - max_bbox[2]
max_d_trans = h - max_bbox[3]
tx = random.uniform(-(max_l_trans - 1), (max_r_trans - 1))
ty = random.uniform(-(max_u_trans - 1), (max_d_trans - 1))
M = np.array([[1, 0, tx], [0, 1, ty]])
image = cv2.warpAffine(image, M, (w, h))
bboxes[:, [0, 2]] = bboxes[:, [0, 2]] + tx
bboxes[:, [1, 3]] = bboxes[:, [1, 3]] + ty
return image, bboxes
这段代码是随机移动图像。
然后是这个函数:
def preprocess_true_boxes(self, bboxes):
label = [np.zeros((self.train_output_sizes[i], self.train_output_sizes[i], self.anchor_per_scale,
5 + self.num_classes)) for i in range(3)]
bboxes_xywh = [np.zeros((self.max_bbox_per_scale, 4)) for _ in range(3)]
bbox_count = np.zeros((3,))
for bbox in bboxes:
bbox_coor = bbox[:4]
bbox_class_ind = bbox[4]
onehot = np.zeros(self.num_classes, dtype=np.float)
onehot[bbox_class_ind] = 1.0
uniform_distribution = np.full(self.num_classes, 1.0 / self.num_classes)
deta = 0.01
smooth_onehot = onehot * (1 - deta) + deta * uniform_distribution
bbox_xywh = np.concatenate([(bbox_coor[2:] + bbox_coor[:2]) * 0.5, bbox_coor[2:] - bbox_coor[:2]], axis=-1)
bbox_xywh_scaled = 1.0 * bbox_xywh[np.newaxis, :] / self.strides[:, np.newaxis]
iou = []
exist_positive = False
for i in range(3):
anchors_xywh = np.zeros((self.anchor_per_scale, 4))
anchors_xywh[:, 0:2] = np.floor(bbox_xywh_scaled[i, 0:2]).astype(np.int32) + 0.5
anchors_xywh[:, 2:4] = self.anchors[i]
iou_scale = self.bbox_iou(bbox_xywh_scaled[i][np.newaxis, :], anchors_xywh)
iou.append(iou_scale)
iou_mask = iou_scale > 0.3
if np.any(iou_mask):
xind, yind = np.floor(bbox_xywh_scaled[i, 0:2]).astype(np.int32)
label[i][yind, xind, iou_mask, :] = 0
label[i][yind, xind, iou_mask, 0:4] = bbox_xywh
label[i][yind, xind, iou_mask, 4:5] = 1.0
label[i][yind, xind, iou_mask, 5:] = smooth_onehot
bbox_ind = int(bbox_count[i] % self.max_bbox_per_scale)
bboxes_xywh[i][bbox_ind, :4] = bbox_xywh
bbox_count[i] += 1
exist_positive = True
if not exist_positive:
best_anchor_ind = np.argmax(np.array(iou).reshape(-1), axis=-1)
best_detect = int(best_anchor_ind / self.anchor_per_scale)
best_anchor = int(best_anchor_ind % self.anchor_per_scale)
xind, yind = np.floor(bbox_xywh_scaled[best_detect, 0:2]).astype(np.int32)
label[best_detect][yind, xind, best_anchor, :] = 0
label[best_detect][yind, xind, best_anchor, 0:4] = bbox_xywh
label[best_detect][yind, xind, best_anchor, 4:5] = 1.0
label[best_detect][yind, xind, best_anchor, 5:] = smooth_onehot
bbox_ind = int(bbox_count[best_detect] % self.max_bbox_per_scale)
bboxes_xywh[best_detect][bbox_ind, :4] = bbox_xywh
bbox_count[best_detect] += 1
label_sbbox, label_mbbox, label_lbbox = label
sbboxes, mbboxes, lbboxes = bboxes_xywh
return label_sbbox, label_mbbox, label_lbbox, sbboxes, mbboxes, lbboxes
这里只需要提一下返回值,返回值分为两种:小中大标记框的标签和小中大标记框的坐标值,这里说一下标签的构成:0,标记框坐标,置信度和分类概率。这里值得一说的是分类概率是用onehot编码形式,不懂的可以查一下。所以它的作用是:对标记框进行预处理,根据有无物体,及anchor和GT的IOU初始化置信度和分类概率。
最后
这里是数据处理部分个人的理解还很浅显,望大家指正,今天先写到这里,期待下次和大家的一起学习,这里向各位前辈致以诚挚谢意。
更多推荐
所有评论(0)