Flink1.12流批一体API

Flink 的核心 API 最初是针对特定的场景设计的,尽管 Table API / SQL 针对流处理和批处理已经实现了统一的 API,但当用户使用较底层的 API 时,仍然需要在批处理(DataSet API)和流处理(DataStream API)这两种不同的 API 之间进行选择。鉴于批处理是流处理的一种特例,将这两种 API 合并成统一的 API。
Flink 应用程序结构主要包含三部分,Source、Transformation、Sink。

1、Flink的数据源Source

1.1、基于集合的Source

package cn.exam.source;

import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import java.util.Arrays;

/**
* Author SKY
* Desc 演示DataStream-Source-基于集合
*/
public class SourceDemo01_Collection {
   public static void main(String[] args) throws Exception {
       //TODO 0.env
       StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
       env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
       //TODO 1.source
       DataStream<String> ds1 = env.fromElements("hadoop spark flink", "hadoop spark flink");
       DataStream<String> ds2 = env.fromCollection(Arrays.asList("hadoop spark flink", "hadoop spark flink"));
       DataStream<Long> ds3 = env.generateSequence(1, 100);
       DataStream<Long> ds4 = env.fromSequence(1, 100);
       //TODO 2.transformation
       //TODO 3.sink
       ds1.print();
       ds2.print();
       ds3.print();
       ds4.print();
       //TODO 4.execute
       env.execute();
   }
}

1.2 基于文件的Source

package cn.exam.source;

import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

/**
 * Author SKY
 * Desc 演示DataStream-Source-基于本地/HDFS的文件/文件夹/压缩文件
 */
public class SourceDemo02_File {
    public static void main(String[] args) throws Exception {
        //TODO 0.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
        //TODO 1.source
        DataStream<String> ds1 = env.readTextFile("data/input/words.txt");
        DataStream<String> ds2 = env.readTextFile("data/input/dir");
        DataStream<String> ds3 = env.readTextFile("data/input/wordcount.txt.gz");
        //TODO 2.transformation
        //TODO 3.sink
        ds1.print();
        ds2.print();
        ds3.print();
        //TODO 4.execute
        env.execute();
    }
}

1.3 基于Socket的Source

package cn.exam.source;

import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;

/**
 * Author SKY
 * Desc 演示DataStream-Source-基于Socket
 */
public class SourceDemo03_Socket {
    public static void main(String[] args) throws Exception {
        //TODO 0.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);

        //TODO 1.source
        DataStream<String> lines = env.socketTextStream("node1", 9999);
        
        //TODO 2.transformation

        //注意:下面的操作将上面的2步合成了1步,直接切割单词并记为1返回
        SingleOutputStreamOperator<Tuple2<String, Integer>> wordAndOne = lines.flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {
                String[] arr = value.split(" ");
                for (String word : arr) {
                    out.collect(Tuple2.of(word, 1));
                }
            }
        });

        SingleOutputStreamOperator<Tuple2<String, Integer>> result = wordAndOne.keyBy(t -> t.f0).sum(1);

        //TODO 3.sink
        result.print();

        //TODO 4.execute
        env.execute();
    }
}

1.4 自定义数据源Source代码随机生成数据

package cn.exam.source;

import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.RichParallelSourceFunction;

import java.util.Random;
import java.util.UUID;

/**
 * Author SKY
 * Desc 演示DataStream-Source-自定义数据源
 * 需求:
 */
public class SourceDemo04_Customer {
    public static void main(String[] args) throws Exception {
        //TODO 0.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);

        //TODO 1.source
        DataStream<Order> orderDS = env.addSource(new MyOrderSource()).setParallelism(2);

        //TODO 2.transformation

        //TODO 3.sink
        orderDS.print();

        //TODO 4.execute
        env.execute();
    }
    @Data
    @AllArgsConstructor
    @NoArgsConstructor
    public static class Order{
        private String id;
        private Integer userId;
        private Integer money;
        private Long createTime;
    }
    public static class MyOrderSource extends RichParallelSourceFunction<Order>{
        private Boolean flag = true;
        //执行并生成数据
        @Override
        public void run(SourceContext<Order> ctx) throws Exception {
            Random random = new Random();
            while (flag) {
                String oid = UUID.randomUUID().toString();
                int userId = random.nextInt(3);
                int money = random.nextInt(101);
                long createTime = System.currentTimeMillis();
                ctx.collect(new Order(oid,userId,money,createTime));
                Thread.sleep(1000);
            }
        }

        //执行cancel命令的时候执行
        @Override
        public void cancel() {
            flag = false;
        }
    }
}

1.5 自定义数据源-MySQL

package cn.exam.source;

import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.RichParallelSourceFunction;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;

/**
 * Author SKY
 * Desc 演示DataStream-Source-自定义数据源-MySQL
 * 需求:
 */
public class SourceDemo05_Customer_MySQL {
    public static void main(String[] args) throws Exception {
        //TODO 0.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);

        //TODO 1.source
        DataStream<Student> studentDS = env.addSource(new MySQLSource()).setParallelism(1);

        //TODO 2.transformation

        //TODO 3.sink
        studentDS.print();

        //TODO 4.execute
        env.execute();
    }

   /**
   CREATE TABLE `t_student` (
    `id` int(11) NOT NULL AUTO_INCREMENT,
    `name` varchar(255) DEFAULT NULL,
    `age` int(11) DEFAULT NULL,
    PRIMARY KEY (`id`)
    ) ENGINE=InnoDB AUTO_INCREMENT=7 DEFAULT CHARSET=utf8;
    INSERT INTO `t_student` VALUES ('1', 'jack', '18');
    INSERT INTO `t_student` VALUES ('2', 'tom', '19');
    INSERT INTO `t_student` VALUES ('3', 'rose', '20');
    INSERT INTO `t_student` VALUES ('4', 'tom', '19');
    INSERT INTO `t_student` VALUES ('5', 'jack', '18');
    INSERT INTO `t_student` VALUES ('6', 'rose', '20');
    */

    @Data
    @NoArgsConstructor
    @AllArgsConstructor
    public static class Student {
        private Integer id;
        private String name;
        private Integer age;
    }

    public static class MySQLSource extends RichParallelSourceFunction<Student> {
        private boolean flag = true;
        private Connection conn = null;
        private PreparedStatement ps =null;
        private ResultSet rs = null;
        //open只执行一次,适合开启资源
        @Override
        public void open(Configuration parameters) throws Exception {
            conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/bigdata", "root", "123456");
            String sql = "select id,name,age from t_student";
            ps = conn.prepareStatement(sql);
        }

        @Override
        public void run(SourceContext<Student> ctx) throws Exception {
            while (flag) {
                rs = ps.executeQuery();//执行查询
                while (rs.next()) {
                    int id = rs.getInt("id");
                    String name = rs.getString("name");
                    int age = rs.getInt("age");
                    ctx.collect(new Student(id,name,age));
                }
                Thread.sleep(5000);
            }
        }

        //接收到cancel命令时取消数据生成
        @Override
        public void cancel() {
            flag = false;
        }

        //close里面关闭资源
        @Override
        public void close() throws Exception {
            if(conn != null) conn.close();
            if(ps != null) ps.close();
            if(rs != null) rs.close();
        }
    }

}

2.Flink的Sink

2.1 基于控制台和文件

package cn.exam.sink;

import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

/**
 * Author SKY
 * Desc 演示DataStream-Sink-基于控制台和文件
 */
public class SinkDemo01 {
    public static void main(String[] args) throws Exception {
        //TODO 0.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);

        //TODO 1.source
        DataStream<String> ds = env.readTextFile("data/input/words.txt");

        //TODO 2.transformation
        //TODO 3.sink
        ds.print();
        ds.print("输出标识");
        ds.printToErr();//会在控制台上以红色输出
        ds.printToErr("输出标识");//会在控制台上以红色输出
        ds.writeAsText("data/output/result1").setParallelism(1);
        ds.writeAsText("data/output/result2").setParallelism(2);

        //TODO 4.execute
        env.execute();
    }
}

2.2 自定义Sink-MySQL

package cn.exam.sink;

import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;

/**
 * Author SKY
 * Desc 演示DataStream-Sink-自定义Sink
 */
public class SinkDemo02 {
    public static void main(String[] args) throws Exception {
        //TODO 0.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);

        //TODO 1.source
        DataStream<Student> studentDS = env.fromElements(new Student(null, "tony", 18));
        //TODO 2.transformation
        //TODO 3.sink
        studentDS.addSink(new MySQLSink());

        //TODO 4.execute
        env.execute();
    }
    @Data
    @NoArgsConstructor
    @AllArgsConstructor
    public static class Student {
        private Integer id;
        private String name;
        private Integer age;
    }

    public static class MySQLSink extends RichSinkFunction<Student> {
        private Connection conn = null;
        private PreparedStatement ps =null;

        @Override
        public void open(Configuration parameters) throws Exception {
            conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/bigdata", "root", "123456");
            String sql = "INSERT INTO `t_student` (`id`, `name`, `age`) VALUES (null, ?, ?);";
            ps = conn.prepareStatement(sql);
        }

        @Override
        public void invoke(Student value, Context context) throws Exception {
            //设置?占位符参数值
            ps.setString(1,value.getName());
            ps.setInt(2,value.getAge());
            //执行sql
            ps.executeUpdate();
        }
        @Override
        public void close() throws Exception {
            if(conn != null) conn.close();
            if(ps != null) ps.close();
        }
    }
}

2.3 Flink官方提供的JdbcSink

package cn.exam.connectors;

import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.connector.jdbc.JdbcConnectionOptions;
import org.apache.flink.connector.jdbc.JdbcSink;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

/**
 * Author SKY
 * Desc 演示Flink官方提供的JdbcSink
 */
public class JDBCDemo {
    public static void main(String[] args) throws Exception {
        //TODO 0.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);

        //TODO 1.source
        DataStream<Student> studentDS = env.fromElements(new Student(null, "tony2", 18));
        //TODO 2.transformation
        //TODO 3.sink
        studentDS.addSink(JdbcSink.sink(
                "INSERT INTO `t_student` (`id`, `name`, `age`) VALUES (null, ?, ?)",
                (ps, value) -> {
                    ps.setString(1, value.getName());
                    ps.setInt(2, value.getAge());
                }, new JdbcConnectionOptions.JdbcConnectionOptionsBuilder()
                        .withUrl("jdbc:mysql://localhost:3306/bigdata")
                        .withUsername("root")
                        .withPassword("123456")
                        .withDriverName("com.mysql.jdbc.Driver")
                        .build()));

        //TODO 4.execute
        env.execute();
    }

    @Data
    @NoArgsConstructor
    @AllArgsConstructor
    public static class Student {
        private Integer id;
        private String name;
        private Integer age;
    }

}

Flink对接Kafka

准备主题

/export/server/kafka/bin/kafka-topics.sh --create --zookeeper node1:2181 --replication-factor 2 --partitions 3 --topic flink_kafka

启动控制台生产者发送数据

/export/server/kafka/bin/kafka-console-producer.sh --broker-list node1:9092 --topic flink_kafka

启动程序FlinkKafkaConsumer

观察控制台输出结果

3.1 Flink-Connectors-KafkaComsumer/Source

package cn.exam.connectors;

import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;

import java.util.Properties;

/**
 * Author SKY
 * Desc 演示Flink-Connectors-KafkaComsumer/Source
 */
public class KafkaComsumerDemo {
    public static void main(String[] args) throws Exception {
        //TODO 0.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);

        //TODO 1.source
        //准备kafka连接参数
        Properties props = new Properties();
        props.setProperty("bootstrap.servers", "node1:9092");//集群地址
        props.setProperty("group.id", "flink");//消费者组id
        props.setProperty("auto.offset.reset","latest");//latest有offset记录从记录位置开始消费,没有记录从最新的/最后的消息开始消费 /earliest有offset记录从记录位置开始消费,没有记录从最早的/最开始的消息开始消费
        props.setProperty("flink.partition-discovery.interval-millis","5000");//会开启一个后台线程每隔5s检测一下Kafka的分区情况,实现动态分区检测
        props.setProperty("enable.auto.commit", "true");//自动提交(提交到默认主题,后续学习了Checkpoint后随着Checkpoint存储在Checkpoint和默认主题中)
        props.setProperty("auto.commit.interval.ms", "2000");//自动提交的时间间隔
        //使用连接参数创建FlinkKafkaConsumer/kafkaSource
        FlinkKafkaConsumer<String> kafkaSource = new FlinkKafkaConsumer<String>("flink_kafka", new SimpleStringSchema(), props);
        //使用kafkaSource
        DataStream<String> kafkaDS = env.addSource(kafkaSource);

        //TODO 2.transformation

        //TODO 3.sink
        kafkaDS.print();

        //TODO 4.execute
        env.execute();
    }
}

准备主题 flink_kafka

/export/server/kafka/bin/kafka-topics.sh --create --zookeeper node1:2181 --replication-factor 2 --partitions 3 --topic flink_kafka

准备主题 flink_kafka2

/export/server/kafka/bin/kafka-topics.sh --create --zookeeper node1:2181 --replication-factor 2 --partitions 3 --topic flink_kafka2

启动控制台生产者发送数据

/export/server/kafka/bin/kafka-console-producer.sh --broker-list node1:9092 --topic flink_kafka

准备的数据

//log:2021-07-10 success xxx
//log:2021-07-10 success xxx
//log:2021-07-10 success xxx
//log:2021-07-10 fail xxx

启动控制台消费者消费数据

/export/server/kafka/bin/kafka-console-consumer.sh --bootstrap-server node1:9092 --topic flink_kafka2 --from-beginning

启动程序FlinkKafkaConsumer

观察控制台输出结果

3.2 Flink-Connectors-KafkaProducer/Sin

package cn.exam.connectors;

import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;

import java.util.Properties;

/**
 * Author SKY
 * Desc 演示Flink-Connectors-KafkaComsumer/Source + KafkaProducer/Sink
 */
public class KafkaSinkDemo {
    public static void main(String[] args) throws Exception {
        //TODO 0.env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);

        //TODO 1.source
        //准备kafka连接参数
        Properties props = new Properties();
        props.setProperty("bootstrap.servers", "node1:9092");//集群地址
        props.setProperty("group.id", "flink");//消费者组id
        props.setProperty("auto.offset.reset","latest");//latest有offset记录从记录位置开始消费,没有记录从最新的/最后的消息开始消费 /earliest有offset记录从记录位置开始消费,没有记录从最早的/最开始的消息开始消费
        props.setProperty("flink.partition-discovery.interval-millis","5000");//会开启一个后台线程每隔5s检测一下Kafka的分区情况,实现动态分区检测
        props.setProperty("enable.auto.commit", "true");//自动提交(提交到默认主题,后续学习了Checkpoint后随着Checkpoint存储在Checkpoint和默认主题中)
        props.setProperty("auto.commit.interval.ms", "2000");//自动提交的时间间隔
        //使用连接参数创建FlinkKafkaConsumer/kafkaSource
        FlinkKafkaConsumer<String> kafkaSource = new FlinkKafkaConsumer<String>("flink_kafka", new SimpleStringSchema(), props);
        //使用kafkaSource
        DataStream<String> kafkaDS = env.addSource(kafkaSource);

        //TODO 2.transformation
        SingleOutputStreamOperator<String> etlDS = kafkaDS.filter(new FilterFunction<String>() {
            @Override
            public boolean filter(String value) throws Exception {
                return value.contains("success");
            }
        });

        //TODO 3.sink
        etlDS.print();

        Properties props2 = new Properties();
        props2.setProperty("bootstrap.servers", "node1:9092");
        FlinkKafkaProducer<String> kafkaSink = new FlinkKafkaProducer<>("flink_kafka2", new SimpleStringSchema(), props2);
        etlDS.addSink(kafkaSink);

        //TODO 4.execute
        env.execute();
    }
}




Logo

CSDN联合极客时间,共同打造面向开发者的精品内容学习社区,助力成长!

更多推荐