conda install pytorch=0.4.0 cuda90 -c pytorch
conda install pytorch=0.4.0 torchvision cudatoolkit=9.0 -c pytorch


难受,卸载ubuntu的时候,这些天的笔记都没有保存,直接删除了,心痛

以后这些东西还是尽量保存在windows上比较好。

python
import torch
torch.__version__

lspci | grep -i nvidia
查看物理cpu个数

grep 'physical id' /proc/cpuinfo | sort -u

查看核心数量

grep 'core id' /proc/cpuinfo | sort -u | wc -l

查看线程数

grep 'processor' /proc/cpuinfo | sort -u | wc -l

(torch) twinkle@twinkle-ubuntu:~/Myments$ grep 'physical id' /proc/cpuinfo | sort -u
physical id    : 0
(torch) twinkle@twinkle-ubuntu:~/Myments$ grep 'core id' /proc/cpuinfo | sort -u | wc -l
6
(torch) twinkle@twinkle-ubuntu:~/Myments$ grep 'processor' /proc/cpuinfo | sort -u | wc -l
12
 

sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
sudo apt-get install --no-install-recommends libboost-all-dev
sudo apt-get install libopenblas-dev liblapack-dev libatlas-base-dev
sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
sudo apt-get install git cmake build-essential

====================================================================
二是:先官网下载好对应驱动编译

Nvidia中文官网是 http://www.nvidia.cn/page/home.html

1)打开终端,先删除旧的驱动:

sudo apt-get purge nvidia*

2)禁用自带的 nouveau nvidia驱动

sudo apt-get install vim-gtk

sudo vim /etc/vim/vimrc

在这个文件中可以看到有下面这个if判断,意思是语法高亮,如果是被注释掉状态,可以将其放开:

  if has("syntax")
    syntax on
  endif

然后请在您的VIM的最后一行,输入下面这些内容,可以让您的VIM变得更漂亮、舒服。
  "设置左侧行号
  set nu
  "设置tab键长度为4
  set tabstop=4
  "突出显示当前行
  set cursorline
  "在右下角显示光标位置的状态行
  set ruler
  "自动缩进
  set autoindent
  "覆盖文件时不备份
  set nobackup

编辑完成后使用 :wq 进行保存退出

说明:  冒号结束编辑 ,w为保存  q为退出   如果你想放弃也可以 q!为强制退出
---------------------
原文:https://blog.csdn.net/zht741322694/article/details/78959338

创建一个文件通过命令 sudo vim /etc/modprobe.d/blacklist-nouveau.conf

并添加如下内容:

blacklist nouveau
options nouveau modeset=0

再更新一下

sudo update-initramfs -u

修改后需要重启系统。确认下Nouveau是已经被你干掉,使用命令: lsmod | grep nouveau

3)重启系统至init 3(文本模式),也可先进入图形桌面再运行init 3进入文本模式,再安装下载的驱动就无问题,

首先我们需要结束x-window的服务,否则驱动将无法正常安装

关闭X-Window,很简单:sudo service lightdm stop,然后切换tty1控制台:Ctrl+Alt+F1即可

4)接下来就是最关键的一步了:sudo./NVIDIA.run开始安装,安装过程比较快,根据提示选择即可最后安装完毕后,重新启动X-Window:sudo service lightdm start,然后Ctrl+Alt+F7进入图形界面;


最后测试一下是否安装成功

nvidia-smi

nvidia-settings

==========================================================================
sudo apt-get update  
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt-get update
sudo apt-get install nvidia-418
sudo apt-get install mesa-common-dev
sudo apt-get install freeglut3-dev

sudo reboot

nvidia-settings

--------------------------------------
sudo cp -i bxt_guc_ver8_7.bin /lib/firmware/i915
sudo cp -i kbl_guc_ver9_14.bin /lib/firmware/i915

三是:添加官方ppa源

快捷键ctrl+alt+T打开命令终端,加入官方ppa源。

$ sudo add-apt-repository ppa:graphics-drivers/ppa

需要输入密码并按enter键确认。之后刷新软件库并安装最新驱动。

$ sudo apt-get update

$ sudo apt-get install nvidia-367 nvidia-settings nvidia-prime

安装完成后通过下面命令查看是否安装成功。

$ nvidia-settings

注意安装完成后要重启,有如下效果则安装完成,否则就说明安装有问题,尝试关闭UEFI保护试试。

==========================================================================


sudo gedit ~/.bashrc

export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH

===========================================================================
sudo sh cuda_9.0.176_384.81_linux.run --no-opengl-libs

 Do you accept the previously read EULA?
 2 accept/decline/quit: accept
 3 Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 384.81?
 4 (y)es/(n)o/(q)uit: n
 5 Install the CUDA 9.0 Toolkit?
 6 (y)es/(n)o/(q)uit: y
 7 Enter Toolkit Location
 8 [ default is /usr/local/cuda-9.0 ]:  
 9 Do you want to install a symbolic link at /usr/local/cuda?
10 (y)es/(n)o/(q)uit: y
11 Install the CUDA 9.0 Samples?
12 (y)es/(n)o/(q)uit: y
13 Enter CUDA Samples Location
14 [ default is /home/pertor ]:  
15 Installing the CUDA Toolkit in /usr/local/cuda-9.0 ...
16 Missing recommended library: libXmu.so


sudo gedit ~/.bashrc

export PATH=/usr/local/cuda-9.0/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH

source ~/.bashrc

cd /usr/local/cuda-9.0/samples/1_Utilities/deviceQuery

sudo make

./deviceQuery


tar -zxvf cudnn-9.0-linux-x64-v7.6.2.24.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/ -d
sudo chmod a+r /usr/local/cuda/include/cudnn.h
sudo chmod a+r /usr/local/cuda/lib64/libcudnn*

nvcc -V


https://www.cnblogs.com/pertor/p/8733010.html


====================================================================
import torch
print(torch.cuda.is_available())

====================================================================

tar -zxvf linux-x64.tar.gz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Logo

CSDN联合极客时间,共同打造面向开发者的精品内容学习社区,助力成长!

更多推荐