caffe mnist
#!/usr/bin/env pythonimport caffeimport numpy as npimport cv2import sysimport Imageimport matplotlib.pyplot as pltmodel = '/home/lhu/Documents/soft/caffe-1.0/examples/mnist/lenet.prototxt';...
#!/usr/bin/env python
import caffe
import numpy as np
import cv2
import sys
import Image
import matplotlib.pyplot as plt
model = '/home/lhu/Documents/soft/caffe-1.0/examples/mnist/lenet.prototxt';
weights = '/home/lhu/Documents/soft/caffe-1.0/examples/mnist/lenet_iter_10000.caffemodel';
net = caffe.Net(model,weights,caffe.TEST);
caffe.set_mode_cpu()
#img = caffe.io.load_image(sys.argv[1], color=False)
img = cv2.imread(sys.argv[1],0)
if img.shape != [28,28]:
img2 = cv2.resize(img,(28,28))
img = img2.reshape(28,28,-1);
else:
img = img.reshape(28,28,-1);
#revert the image,and normalize it to 0-1 range
img = 1.0 - img/255.0
out = net.forward_all(data=np.asarray([img.transpose(2,0,1)]))
print out['prob'][0]
print out['prob'][0].argmax()
更多推荐
所有评论(0)