Java 实现 Kafka Streaming API

下面用几个实例简单实现一下Kafka Streaming, 几个案例都需要提前在kafka内创建对应名称的 topic,这里不做赘述,直入主题。

案例一:实现直接转入

本案例实现的功能为 往 topic A 写入数据时,会同步写入topic B, 只是简单的转发功能,代码如下:

import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.common.serialization.StringSerializer;
import org.apache.kafka.streams.KafkaStreams;
import org.apache.kafka.streams.StreamsBuilder;
import org.apache.kafka.streams.StreamsConfig;
import org.apache.kafka.streams.Topology;
import java.util.Properties;
import java.util.concurrent.CountDownLatch;

public class MyStreamDemo {
    public static void main(String[] args) {
        Properties prop=new Properties();
        prop.put(StreamsConfig.APPLICATION_ID_CONFIG,"mystream");
        prop.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.146.222:9092");
        prop.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG,Serdes.String().getClass());
        prop.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG,Serdes.String().getClass());

        //创建 流的 构造器
        StreamsBuilder builder = new StreamsBuilder();

        //用构造好的builder 将mystreamin  topic里面的数据写入到mystreamout topic 中
        builder.stream("mystreamingin").to("mystreamingout");

        //构建  拓扑
        Topology topo = builder.build();
        final KafkaStreams streams = new KafkaStreams(topo, prop);


        final CountDownLatch latch = new CountDownLatch(1);
        Runtime.getRuntime().addShutdownHook(new Thread("stream"){
            @Override
            public void run() {
                streams.close();
                latch.countDown();
            }
        });

        try{
          streams.start();
          latch.await();
        }catch (InterruptedException e){
            e.printStackTrace();
        }

    }
}

实现的结果如图所示:
在这里插入图片描述

案例二,实现相加功能

例如往 topic A中 输入几个数字,会自动累计,然后把和 输入topic B 内,这里需要设置提交数据的方式以及 间隔时间,以区分边界,代码如下:

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.streams.*;
import org.apache.kafka.streams.kstream.KStream;
import org.apache.kafka.streams.kstream.KTable;
import java.util.Properties;
import java.util.concurrent.CountDownLatch;

public class SumStreamDemo {
    public static void main(String[] args) {
        Properties prop=new Properties();
        prop.put(StreamsConfig.APPLICATION_ID_CONFIG,"sum");
        prop.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.146.222:9092");
        prop.put(StreamsConfig.COMMIT_INTERVAL_MS_CONFIG,3000); //提交时间间隔
        prop.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,"false"); //是否自动提交
        prop.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,"earliest");   //earliest latest none
        prop.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());
        prop.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass());

        StreamsBuilder builder = new StreamsBuilder();
        KStream<Object, Object> source = builder.stream("suminput");
        //key value 数据格式 [null 4 , null 5, null 3]
        KTable<String, String> sum1 = source.map((key, value) ->
                new KeyValue<String, String>("sum", value.toString())
        )// [sum  4,  sum  5 , sum  3]
                .groupByKey()           //[sum , (4,5,3)]
                .reduce((x, y) -> {
                    Integer sum = Integer.valueOf(x) + Integer.valueOf(y);
                    System.out.println("x:" + x + " + y:" + y + "  =  " + sum);
                    return sum.toString();
                });
        sum1.toStream().to("sumoutput");


        //构建  拓扑
        Topology topo = builder.build();
        final KafkaStreams streams = new KafkaStreams(topo, prop);
        final CountDownLatch latch = new CountDownLatch(1);
        Runtime.getRuntime().addShutdownHook(new Thread("stream"){
            @Override
            public void run() {
                streams.close();
                latch.countDown();
            }
        });
            try{
            streams.start();
            latch.await();
        }catch (InterruptedException e){
            e.printStackTrace();
        }
    }

}

实现的结果如图所示:
在这里插入图片描述

案例三,实现wordcount 功能

实现wordcount功能,即在 topic A 中 输入一组字符串,然后根据分隔符切分后,统计出每个单词出现的次数,形成新的键值对后 发送到 topic B 内。代码如下:

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.streams.*;
import org.apache.kafka.streams.kstream.KStream;
import org.apache.kafka.streams.kstream.KTable;
import org.apache.kafka.streams.kstream.Produced;
import java.util.Arrays;
import java.util.List;
import java.util.Properties;
import java.util.concurrent.CountDownLatch;


public class WordCountStreamDemo {
    public static void main(String[] args) {
        Properties prop=new Properties();
        prop.put(StreamsConfig.APPLICATION_ID_CONFIG,"wordcount");
        prop.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.146.222:9092");
        prop.put(StreamsConfig.COMMIT_INTERVAL_MS_CONFIG,3000); //提交时间间隔
        prop.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,"false"); //是否自动提交
        prop.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,"earliest");   //earliest latest none
        prop.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());
        prop.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass());

        StreamsBuilder builder = new StreamsBuilder();
        KStream<Object, Object> count = builder.stream("wordcountin");  //hello  world hello java
        KTable<String, Long> count1 = count.flatMapValues(x -> {
            String[] split = x.toString().split("\\s+");
            List<String> strings = Arrays.asList(split);
            return strings;
        })    //[null  hello,null  world,null  hello,null  java ]
                .map((k, v) -> {
                    KeyValue<String, String> keyValue = new KeyValue<>(v, "1");
                    return keyValue;
                })      //[hello:1,world:1,hello:1,java:1]
                .groupByKey()  //[hello:(1,1),world:(1),java:(1)]
                .count();     //[hello:2,world:1,java:1]

        count1.toStream().foreach((key,value)->{
            System.out.println("key:"+key+","+"value"+value);
        });

//        count1.toStream().to("wordcountout", Produced.with(Serdes.String(),Serdes.Long()));
        count1.toStream().map((key,value)->{
            return new KeyValue<String,String>(key,key+value.toString());
        }).to("wordcountout");


        //构建  拓扑
        Topology topo = builder.build();
        final KafkaStreams streams = new KafkaStreams(topo, prop);
        final CountDownLatch latch = new CountDownLatch(1);
        Runtime.getRuntime().addShutdownHook(new Thread("stream"){
            @Override
            public void run() {
                streams.close();
                latch.countDown();
            }
        });
        try{
            streams.start();
            latch.await();
        }catch (InterruptedException e){
            e.printStackTrace();
        }
    }
}

实现的结果如图所示:
在这里插入图片描述

Logo

CSDN联合极客时间,共同打造面向开发者的精品内容学习社区,助力成长!

更多推荐