matlab icol,人脸识别-2dpca之Matlab程序
本程序采用2级PCA提取特征,最小藕欧距离分类器进行人脸识别,实验数据为orl人脸库。本文作为我从事模式识别研究的开始,留下此代码作为见证。由于Matlab软件是初次使用,很多函数还不是很熟识,所以代码的执行效率可能不够高,本代码仅供参考。参考文献:J. Yang, D. Zhang, A.F. Frangi, J.Y.Yang, Two-dimensional PCA: a new approa
本程序采用2级PCA提取特征,最小藕欧距离分类器进行人脸识别,实验数据为orl人脸库。
本文作为我从事模式识别研究的开始,留下此代码作为见证。
由于Matlab软件是初次使用,很多函数还不是很熟识,所以代码的执行效率可能不够高,本代码仅供参考。
参考文献:J. Yang, D. Zhang, A.F. Frangi, J.Y.
Yang, Two-dimensional PCA: a new approach to appearancebased face
representation and recognition, IEEE Trans. Pattern Anal. Mach.
Intell. 26 (1) (2004)
131–137.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%This program is writen by zhangming on 2009-5-10
%this is my homeworke of machine leaning
%my e-mail: zm_fred@163.com
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all
clc
close all
%选择训练样本路径
TrainDatabasePath = uigetdir('D:\myexperiments\mydate\orl_faces',
'Select training database path' );
%选择测试样本路径
TestDatabasePath = uigetdir('D:\myexperiments\mydate\orl_faces',
'Select test database path');
%生成测试数据集
%T = CreateDatabase(TrainDatabasePath);
TrainFiles = dir(TrainDatabasePath);
class_Number = 0;
s=size(TrainFiles,1);
%计算训练样本个数
for i = 1:size(TrainFiles,1)
if
not(strcmp(TrainFiles(i).name,'.')|strcmp(TrainFiles(i).name,'..')|strcmp(TrainFiles(i).name,'README'))
class_Number = class_Number + 1; % Number of all images in the
training database
end
end
%读取训练集第一个图像,得到其尺寸,初始化图像矩阵
str = strcat(TrainDatabasePath,'\s1.\1.pgm');
img = imread(str);
[irow,icol] = size(img);
A=zeros(irow,icol,2);
%合计有Train_Number人的目录,每个目录存放某人的10幅人脸图像,取前n副图像做训练样本
n=5;
for i = 1 : class_Number
topdir =
int2str(i);
topdir =
strcat(TestDatabasePath,'\s',topdir);
for j= 1 :
n
%for j= 1 :2 :9
str = int2str(j);
str = strcat(topdir,'\',str,'.pgm');
img = imread(str);
A(:,:,n*(i-1)+j) = img; end
end
%得到训练样本的个数Train_Number
Train_Number = size(A,3);
%求所有训练样本向量的均值 M
M=mean(A,3);
%求图像散布矩阵Gt
Gt=zeros(icol,icol);
for i = 1 : Train_Number
temp =
A(:,:,i)-M;
Gt
= Gt + temp'*temp;
end
Gt=Gt/Train_Number;
d = 10;
[V D] = eigs(Gt,d);
%PCA空间投影图像
%V = orth(V);
ProjectedImages = zeros(irow,d);
for i = 1 : Train_Number
ProjectedImages(:,:,i) =
A(:,:,i)*V; end
%已识别测试集的数目Recnum
Recnum=0
for i = 1 : class_Number
topdir =
int2str(i);
topdir =
strcat(TestDatabasePath,'\s',topdir);
for j=
n+1:10
%for j= 2 :2 :10
str = int2str(j);
TestImage = strcat(topdir,'\',str,'.pgm'); %测试样本路径
%测试样本原始数据
im = imread(TestImage);
%测试样本的投影
ProjectedTestImage = double(im)*V;
gc=[];
%for t=1 : class_Number
% mk=mean( ProjectedImages( :,:,(t-1)*n+1:t*n), 3);
%此处参数t*n,n是前n个样本作为训练样本,
% % temp = norm( ProjectedTestImage - mk );
% gc=[gc
temp];
%end
for i=1 : Train_Number
temp = norm( ProjectedTestImage - ProjectedImages( :,:,i
),'fro');
gc=[gc temp];
end
[dist_min , Recognized_index1] = min(gc);
Recognized_index1 = floor((Recognized_index1-1)/n)+1;
OutputName =
Recognized_index1; OutputName
=strcat(TestDatabasePath,'\s',int2str(OutputName));
%如果测试样本分类正确,则 Recnum加1
if(strcmp(OutputName,topdir)==1)
更多推荐
所有评论(0)