【语音识别】基于DNN-HMM的语音识别系统(含完整代码)
使用如下命令运行该实验,该程序末尾会打印出在测试集上的准确率。假设实现正确,应该得到95%以上的准确率,实现分类准确率为99.49%。本次实验所用的数据为0-9(其中0的标签为Z(Zero))和O这11个字符的英文录音所提取的39维的MFCC特征。请阅读dnn.py中的代码,理解该DNN框架,完善ReLU激活函数和FullyConnect全连接层的前向后向算法。本实验实现了一个简单的DNN的框架,
·
基于DNN-HMM的语音识别系统
1、数据说明
本次实验所用的数据为0-9(其中0的标签为Z(Zero))和O这11个字符的英文录音所提取的39维的MFCC特征。其中
- 训练数据:330句话,11个字符,每个字符30句话,训练数据位于train目录下。
- 测试数据:110句话,11个字符,每个字符10句话,测试数据位于test目录下。
train/test目录下各有3个文件,分别如下:
- text: 标注文件,每一行第一列为句子id,第二列为标注。
- feats.scp: 特征索引文件,每一行第一列为句子id,第二列为特征的索引表示。
- feats.ark: 特征实际存储文件,该文件为二进制文件。
2、实验内容
本实验实现了一个简单的DNN的框架,使用DNN进行11个数字的训练和识别。
实验中使用以上所述的训练和测试数据分别对该DNN进行训练和测试。
请阅读dnn.py中的代码,理解该DNN框架,完善ReLU激活函数和FullyConnect全连接层的前向后向算法。
可以参考Softmax的前向和后向实现。dnn.py中代码插入位置为。
# BEGIN_LAB
# write your code here
# END_LAB
3、运行和检查
使用如下命令运行该实验,该程序末尾会打印出在测试集上的准确率。假设实现正确,应该得到95%以上的准确率,实现分类准确率为99.49%。
python dnn.py
import math
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import kaldi_io
from utils import *
def plot_spectrogram(spec, file_name):
fig = plt.figure(figsize=(20, 10))
plt.plot(spec)
plt.xlabel('epochs')
plt.ylabel('loss')
plt.savefig(file_name)
plt.show()
targets_list = ['Z', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'O']
targets_mapping = {}
for i, x in enumerate(targets_list):
targets_mapping[x] = i
class Layer:
def forward(self, input):
''' Forward function by input
Args:
input: input, B * N matrix, B for batch size
Returns:
output when applied this layer
'''
raise 'Not implement error'
def backward(self, input, output, d_output):
''' Compute gradient of this layer's input by (input, output, d_output)
as well as compute the gradient of the parameter of this layer
Args:
input: input of this layer
output: output of this layer
d_output: accumulated gradient from final output to this
layer's output
Returns:
accumulated gradient from final output to this layer's input
'''
raise 'Not implement error'
def set_learning_rate(self, lr):
''' Set learning rate of this layer'''
self.learning_rate = lr
def update(self):
''' Update this layers parameter if it has or do nothing
'''
class ReLU(Layer):
def forward(self, input):
mat = np.maximum(0, input)
return mat.T
def backward(self, input, output, d_output):
mat = np.array(d_output, copy=True)
mat[input <= 0] = 0
return mat.T
class FullyConnect(Layer):
def __init__(self, in_dim, out_dim):
self.w = np.random.randn(out_dim, in_dim) * np.sqrt(2.0 / in_dim) # weight
self.b = np.zeros((out_dim, 1)) # bias
self.dw = np.zeros((out_dim, in_dim))
self.db = np.zeros((out_dim, 1))
def forward(self, input):
mat = np.dot(self.w, input.T) + self.b
return mat
def backward(self, input, output, d_output):
batch_size = input.shape[0]
in_diff = None
# BEGIN_LAB, compute in_diff/dw/db here
self.dw = np.dot(d_output, input) / batch_size
self.db = np.sum(d_output, axis=1, keepdims=True) / batch_size
in_diff = np.dot(self.w.T, d_output).T
# END_LAB
# Normalize dw/db by batch size
self.dw = self.dw / batch_size
self.db = self.db / batch_size
return in_diff
def update(self):
self.w = self.w - self.learning_rate * self.dw
self.b = self.b - self.learning_rate * self.db
class Softmax(Layer):
def forward(self, input):
_input = input.T
row_max = _input.max(axis=1).reshape(_input.shape[0], 1)
x = _input - row_max
return np.exp(x) / np.sum(np.exp(x), axis=1).reshape(x.shape[0], 1)
def backward(self, input, output, d_output):
''' Directly return the d_output as we show below, the grad is to
the activation(input) of softmax
'''
return d_output
class DNN:
def __init__(self, in_dim, out_dim, hidden_dim, num_hidden):
self.layers = []
self.layers.append(FullyConnect(in_dim, hidden_dim[0]))
self.layers.append(ReLU())
for i in range(num_hidden):
self.layers.append(FullyConnect(hidden_dim[i], hidden_dim[i + 1]))
self.layers.append(ReLU())
self.layers.append(FullyConnect(hidden_dim[len(hidden_dim) - 1], out_dim))
self.layers.append(Softmax())
def set_learning_rate(self, lr):
for layer in self.layers:
layer.set_learning_rate(lr)
def forward(self, input):
self.forward_buf = []
out = input
self.forward_buf.append(out)
for i in range(len(self.layers)):
out = self.layers[i].forward(out)
self.forward_buf.append(out)
assert (len(self.forward_buf) == len(self.layers) + 1)
return out
def backward(self, grad):
'''
Args:
grad: the grad is to the activation before softmax
'''
self.backward_buf = [None] * len(self.layers)
# print("1",self.backward_buf.shape)
self.backward_buf[len(self.layers) - 1] = grad
# print("2",self.backward_buf.shape)
for i in range(len(self.layers) - 2, -1, -1):
# print("3",self.backward_buf[i + 1].shape)
grad = self.layers[i].backward(self.forward_buf[i],
self.forward_buf[i + 1],
self.backward_buf[i + 1].T)
self.backward_buf[i] = grad
def update(self):
for layer in self.layers:
layer.update()
def one_hot(labels, total_label):
output = np.zeros((labels.shape[0], total_label))
for i in range(labels.shape[0]):
output[i][labels[i]] = 1.0
return output
def train(dnn):
utt2feat, utt2target = read_feats_and_targets('train/feats.scp',
'train/text')
inputs, labels = build_input(targets_mapping, utt2feat, utt2target)
num_samples = inputs.shape[0]
# Shuffle data
permute = np.random.permutation(num_samples)
inputs = inputs[permute]
labels = labels[permute]
num_epochs = 100
batch_size = 100
avg_loss = np.zeros(num_epochs)
for i in range(num_epochs):
cur = 0
while cur < num_samples:
end = min(cur + batch_size, num_samples)
input = inputs[cur:end]
label = labels[cur:end]
# Step1: forward
out = dnn.forward(input)
one_hot_label = one_hot(label, out.shape[1])
# print(label)
# print(out.shape)
# Step2: Compute cross entropy loss and backward
loss = -np.sum(np.log(out + 1e-20) * one_hot_label) / out.shape[0]
# The grad is to activation before softmax
grad = out - one_hot_label
dnn.backward(grad)
# Step3: update parameters
dnn.update()
print('Epoch {} num_samples {} loss {}'.format(i, cur, loss))
avg_loss[i] += loss
cur += batch_size
avg_loss[i] /= math.ceil(num_samples / batch_size)
plot_spectrogram(avg_loss, 'loss.png')
def mytest(dnn):
utt2feat, utt2target = read_feats_and_targets('test/feats.scp',
'test/text')
total = len(utt2feat)
correct = 0
for utt in utt2feat:
t = utt2target[utt]
ark = utt2feat[utt]
mat = kaldi_io.read_mat(ark)
mat = splice(mat, 5, 5)
posterior = dnn.forward(mat)
posterior = np.sum(posterior, axis=0) / float(mat.shape[0])
predict = targets_list[np.argmax(posterior)]
if t == predict: correct += 1
print('label: {} predict: {}'.format(t, predict))
print('Acc: {}'.format(float(correct) / total))
def main():
np.random.seed(777)
# We splice the raw feat with left 5 frames and right 5 frames
# So the input here is 39 * (5 + 1 + 5) = 429
dnn = DNN(429, 11, [170, 200, 150], 2)
dnn.set_learning_rate(2e-2)
train(dnn)
test(dnn)
if __name__ == '__main__':
main()
更多推荐
已为社区贡献5条内容
所有评论(0)