浅析机器学习、深度学习、神经网络三者的关系及内在联系
一、机器学习机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径。简而言之,让机器自己学习。机器学习是一门多学科交叉专业,涵盖概率论知识,统计学知识,近似理论知识和复杂算法知识,使用计算...
一、机器学习
机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径。简而言之,让机器自己学习。
机器学习是一门多学科交叉专业,涵盖概率论知识,统计学知识,近似理论知识和复杂算法知识,使用计算机作为工具并致力于真实实时的模拟人类学习方式, 并将现有内容进行知识结构划分来有效提高学习效率。
机器学习有下面几种定义:
(1)机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能。
(2)机器学习是对能通过经验自动改进的计算机算法的研究。
(3)机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。
机器学习常见算法
决策树算法
决策树及其变种是一类将输入空间分成不同的区域,每个区域有独立参数的算法。决策树算法充分利用了树形模型,根节点到一个叶子节点是一条分类的路径规则,每个叶子节点象征一个判断类别。先将样本分成不同的子集,再进行分割递推,直至每个子集得到同类型的样本,从根节点开始测试,到子树再到叶子节点,即可得出预测类别。此方法的特点是结构简单、处理数据效率较高。 [4]
朴素贝叶斯算法
朴素贝叶斯算法是一种分类算法。它不是单一算法,而是一系列算法,它们都有一个共同的原则,即被分类的每个特征都与任何其他特征的值无关。朴素贝叶斯分类器认为这些“特征”中的每一个都独立地贡献概率,而不管特征之间的任何相关性。然而,特征并不总是独立的,这通常被视为朴素贝叶斯算法的缺点。简而言之,朴素贝叶斯算法允许我们使用概率给出一组特征来预测一个类。与其他常见的分类方法相比,朴素贝叶斯算法需要的训练很少。在进行预测之前必须完成的唯一工作是找到特征的个体概率分布的参数,这通常可以快速且确定地完成。这意味着即使对于高维数据点或大量数据点,朴素贝叶斯分类器也可以表现良好。
支持向量机算法
基本思想可概括如下:首先,要利用一种变换将空间高维化,当然这种变换是非线性的,然后,在新的复杂空间取最优线性分类表面[8]。由此种方式获得的分类函数在形式上类似于神经网络算法。支持向量机是统计学习领域中一个代表性算法,但它与传统方式的思维方法很不同,输入空间、提高维度从而将问题简短化,使问题归结为线性可分的经典解问题。支持向量机应用于垃圾邮件识别,人脸识别等多种分类问题。
随机森林算法
控制数据树生成的方式有多种,根据前人的经验,大多数时候更倾向选择分裂属性和剪枝,但这并不能解决所有问题,偶尔会遇到噪声或分裂属性过多的问题。基于这种情况,总结每次的结果可以得到袋外数据的估计误差,将它和测试样本的估计误差相结合可以评估组合树学习器的拟合及预测精度。此方法的优点有很多,可以产生高精度的分类器,并能够处理大量的变数,也可以平衡分类资料集之间的误差。
人工神经网络算法
人工神经网络与神经元组成的异常复杂的网络此大体相似,是个体单元互相连接而成,每个单元有数值量的输入和输出,形式可以为实数或线性组合函数。它先要以一种学习准则去学习,然后才能进行工作。当网络判断错误时,通过学习使其减少犯同样错误的可能性。此方法有很强的泛化能力和非线性映射能力,可以对信息量少的系统进行模型处理。从功能模拟角度看具有并行性,且传递信息速度极快。
Boosting与Bagging算法
Boosting是种通用的增强基础算法性能的回归分析算法。不需构造一个高精度的回归分析,只需一个粗糙的基础算法即可,再反复调整基础算法就可以得到较好的组合回归模型。它可以将弱学习算法提高为强学习算法,可以应用到其它基础回归算法,如线性回归、神经网络等,来提高精度。Bagging和前一种算法大体相似但又略有差别,主要想法是给出已知的弱学习算法和训练集,它需要经过多轮的计算,才可以得到预测函数列,最后采用投票方式对示例进行判别。
关联规则算法
关联规则是用规则去描述两个变量或多个变量之间的关系,是客观反映数据本身性质的方法。它是机器学习的一大类任务,可分为两个阶段,先从资料集中找到高频项目组,再去研究它们的关联规则。其得到的分析结果即是对变量间规律的总结。
EM(期望最大化)算法
在进行机器学习的过程中需要用到极大似然估计等参数估计方法,在有潜在变量的情况下,通常选择EM算法,不是直接对函数对象进行极大估计,而是添加一些数据进行简化计算,再进行极大化模拟。它是对本身受限制或比较难直接处理的数据的极大似然估计算法。
二、深度学习
深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI, Artificial Intelligence)。
深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。
深度学习在搜索技术、数据挖掘、机器学习、机器翻译、自然语言处理、多媒体学习、语音、推荐和个性化技术,以及其他相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。
深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。研究深度学习的动机在于建立模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本等。
深度学习常见方法
深度学习是一类模式分析方法的统称,就具体研究内容而言,主要涉及三类方法:
(1)基于卷积运算的神经网络系统,即卷积神经网络(CNN)。
(2)基于多层神经元的自编码神经网络,包括自编码( Auto encoder)以及近年来受到广泛关注的稀疏编码两类( Sparse Coding)。
(3)以多层自编码神经网络的方式进行预训练,进而结合鉴别信息进一步优化神经网络权值的深度置信网络(DBN)。
三、神经网络
人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
神经网络算法
神经网络是所谓深度学习的一个基础,也是必备的知识点,他是以人脑中的神经网络作为启发,最著名的算法就是backpropagation算法,这里就简单的整理一下神经网络相关参数,和计算方法。
一、多层向前神经网络(Multilayer Feed-Forward Neural Network)
多层向前神经网络由一下几个部分组成:
输入层(input layer),隐藏层(Hidden layer),输出层(output layer)
特点如下:
1、每层由单元(units)组成
2、输入层是有训练集的实例特征向量传入
3、经过连接接点的权重(weight)传入下一层,一层的输出是下一层的输入
4、隐藏层的个数可以是任意的,输入层有一层,输出层有一层
5、每个单元也可以称之为神经结点,根据生物学来源定义
6、以上成为两层的神经网络,输入层是不算在里面的
7、一层中加权求和,然后根据非线性方程转化输出
8、作为多层向前神经网络,理论上,如果有足够的隐藏层,和足够的训练集,可以模拟出任何方程
设计神经网络结构
使用神经网络训练数据之前,必须确定神经网络的层数,以及每层单元的个数
特征向量在被传入输入层时通常被先标准化(normalize)到0和1之间 (为了加速学习过程)
离散型变量可以被编码成每一个输入单元对应一个特征值可能赋的值
比如:特征值A可能取三个值(a0, a1, a2), 可以使用3个输入单元来代表A。
如果A=a0, 那么代表a0的单元值就取1, 其他取0;
如果A=a1, 那么代表a1de单元值就取1,其他取0,以此类推
神经网络即可以用来做分类(classification)问题,也可以解决回归(regression)问题
1 对于分类问题,如果是2类,可以用一个输出单元表示(0和1分别代表2类)
如果多余2类,每一个类别用一个输出单元表示
所以输入层的单元数量通常等于类别的数量
2 没有明确的规则来设计最好有多少个隐藏层
根据实验测试和误差,以及准确度来实验并改进
交叉验证方法
这里有一堆数据,我们把他切成3个部分(当然还可以分的更多)
第一部分做测试集,二三部分做训练集,算出准确度;
第二部分做测试集,一三部分做训练集,算出准确度;
第三部分做测试集,一二部分做训练集,算出准确度;
之后算出三个准确度的平局值,作为最后的准确度,如下图:
更多推荐
所有评论(0)