ElasticSearch使用Kibana实现批量操作(一)
ElasticSearch使用Kibana实现批量操作-Multi Get API1.批量获取多份文档2、指定显示的字段上篇介绍了介绍ElasticSearch使用Kibana实现基本的增删改查操作,本篇主要介绍批量操作合并多个请求可以避免每个请求单独的网络开销。 如果你需要从Elasticsearch中检索多个文档, 相对于一个一个的检索, 更快的方式是在一个请求中使用mul...
ElasticSearch使用Kibana实现批量操作-Multi Get API
1.批量获取多份文档
2、指定显示的字段
上篇介绍了介绍ElasticSearch使用Kibana实现基本的增删改查操作,本篇主要介绍批量操作
合并多个请求可以避免每个请求单独的网络开销。 如果你需要从Elasticsearch中检索多个文档, 相对于一个一个的检索, 更快的方式是在一个请求中使用multi-get或者 mget API。
mget API参数是一个 docs 数组, 数组的每个节点定义一个文档的 _index 、 _type 、 _id 元数据。 如果你只想检索一个或几个确定的字段, 也可以定义一个 _source 参数:
1.批量获取多份文档
GET /_mget
{
"docs":[
{
"_index": "lib",
"_type": "user",
"_id": 1
},
{
"_index": "lib",
"_type": "user",
"_id": 2
},
{
"_index": "test",
"_type": "people",
"_id": 1
}
]
}
"_index": "lib" 指定查询的索引名
"_type": "user" 指定查询的类型名
"_id": 1 指定查询的文档id
#查询结果
{
"docs": [
{
"_index": "lib",
"_type": "user",
"_id": "1",
"_version": 2,
"found": true,
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 20,
"about": "I like to collect rock albums",
"interests": [
"music"
]
}
},
{
"_index": "lib",
"_type": "user",
"_id": "2",
"_version": 1,
"found": true,
"_source": {
"first_name": "zhou",
"last_name": "Lucky",
"age": 32,
"about": "I like to collect rock albums",
"interests": [
"music"
]
}
},
{
"_index": "test",
"_type": "people",
"_id": "1",
"_version": 1,
"found": true,
"_source": {
"first_name": "zhou",
"last_name": "Lucly",
"age": 32,
"about": "I like to collect rock albums",
"interests": [
"music"
]
}
}
]
}
2、指定显示的字段
GET /_mget
{
"docs":[
{
"_index": "lib",
"_type": "user",
"_id": 1,
"_source":"interests" #仅仅指定一列
},
{
"_index": "lib",
"_type": "user",
"_id": 2,
"_source":["interests","age"] #指定多列
}
]
}
#查询结果
{
"docs": [
{
"_index": "lib",
"_type": "user",
"_id": "1",
"_version": 2,
"found": true,
"_source": {
"interests": [
"music"
]
}
},
{
"_index": "lib",
"_type": "user",
"_id": "2",
"_version": 1,
"found": true,
"_source": {
"interests": [
"music"
],
"age": 32
}
}
]
}
当查询的索引和类型都相同时
GET /lib/user/_mget
{
"docs":[
{
"_id": 1
},
{
"_id": 2,
"_source":["interests","age"]
}
]
}
#查询结果
{
"docs": [
{
"_index": "lib",
"_type": "user",
"_id": "1",
"_version": 2,
"found": true,
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 20,
"about": "I like to collect rock albums",
"interests": [
"music"
]
}
},
{
"_index": "lib",
"_type": "user",
"_id": "2",
"_version": 1,
"found": true,
"_source": {
"interests": [
"music"
],
"age": 32
}
}
]
}
如果只查询id,可以更简单
GET /lib/user/_mget
{
"ids": [1,2,3]
}
执行结果:
{
"docs": [
{
"_index": "lib",
"_type": "user",
"_id": "1",
"_version": 2,
"found": true,
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 20,
"about": "I like to collect rock albums",
"interests": [
"music"
]
}
},
{
"_index": "lib",
"_type": "user",
"_id": "2",
"_version": 1,
"found": true,
"_source": {
"first_name": "zhou",
"last_name": "Lucky",
"age": 32,
"about": "I like to collect rock albums",
"interests": [
"music"
]
}
},
{
"_index": "lib",
"_type": "user",
"_id": "3",
"_version": 1,
"found": true,
"_source": {
"first_name": "zhou",
"last_name": "Lucy",
"age": 32,
"about": "I like to collect rock albums",
"interests": [
"music"
]
}
}
]
}
注意:
即使有一个文档没有被找到, HTTP请求状态码也是 200 。 事实上, 就算所有文档都找不到, 请求也还是返回 200 , 原因是 mget 请求本身成功了。 如果想知道每个文档是否都成功了, 你需要检查 found 标志。
对人工智能感兴趣的同学,可以点击以下链接:
现在人工智能非常火爆,很多朋友都想学,但是一般的教程都是为博硕生准备的,太难看懂了。最近发现了一个非常适合小白入门的教程,不仅通俗易懂而且还很风趣幽默。所以忍不住分享一下给大家。点这里可以跳转到教程。
更多推荐
所有评论(0)