Python模拟RSA算法
#!/usr/bin/env pythondef range_prime(start, end):l = list()for i in range(start, end+1):flag = Truefor j in range(2, i):if i % j == 0:flag =
·
参考http://www.liaoxuefeng.com/article/00137389255913089a316bc2ccb48d3b2323759fecd4cf8000
维基百科给出的RSA算法简介如下:
假设Alice想要通过一个不可靠的媒体接收Bob的一条私人讯息。她可以用以下的方式来产生一个公钥和一个私钥:
随意选择两个大的质数p和q,p不等于q,计算N=pq。
根据欧拉函数,不大于N且与N互质的整数个数为(p-1)(q-1)
选择一个整数e与(p-1)(q-1)互质,并且e小于(p-1)(q-1)
用以下这个公式计算d:d × e ≡ 1 (mod (p-1)(q-1))
将p和q的记录销毁。
(N,e)是公钥,(N,d)是私钥。(N,d)是秘密的。Alice将她的公钥(N,e)传给Bob,而将她的私钥(N,d)藏起来。
#!/usr/bin/env python
def range_prime(start, end):
l = list()
for i in range(start, end+1):
flag = True
for j in range(2, i):
if i % j == 0:
flag = False
break
if flag:
l.append(i)
return l
def generate_keys(p, q):
#numbers = (11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47)
numbers =range_prime(10, 100)
N = p * q
C = (p-1) * (q-1)
e = 0
for n in numbers:
if n < C and C % n > 0:
e = n
break
if e==0:
raise StandardError("e not found")
d = 0
for n in range(2, C):
if(e * n) % C == 1:
d = n
break
if d==0:
raise StandardError("d not found")
return ((N, e), (N, d))
def encrypt(m, key):
C, x = key
return (m ** x) % C
decrypt = encrypt
if __name__ == '__main__':
pub, pri = generate_keys(47, 79)
L = range(20, 30)
C = map(lambda x: encrypt(x, pub), L)
D = map(lambda x: decrypt(x, pri), C)
print "keys:", pub, pri
print "message:", L
print "encrypt:", C
print "decrypt:", D
keys: (3713, 11) (3713, 1631)
message: [20, 21, 22, 23, 24, 25, 26, 27, 28, 29]
encrypt: [406, 3622, 3168, 134, 3532, 263, 1313, 2743, 2603, 1025]
decrypt: [20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L]
更多推荐
已为社区贡献3条内容
所有评论(0)