目标检测评估指标mAP的计算-python
目标检测评估指标mAP的计算-python目标检测性能评估指标mAP介绍为解决不同场景下对目标检测的位置偏差的需求不同,通常给定一个IOU阈值,超过此阈值则视为检测成功。以及考虑到类别平衡的问题,通常分别求每一个类别的性能,再进行类别间求平均。那么给定一个IOU阈值以及一个特定的类别,如何求这个类别的AP值呢?首先对所有的检测结果排序,得分越高越靠前,然后依次判断检测是否成功。先求出检测结果det
目标检测评估指标mAP的计算-python
目标检测性能评估指标mAP介绍
为解决不同场景下对目标检测的位置偏差的需求不同,通常给定一个IOU阈值,超过此阈值则视为检测成功。以及考虑到类别平衡的问题,通常分别求每一个类别的性能,再进行类别间求平均。
那么给定一个IOU阈值以及一个特定的类别,如何求这个类别的AP值呢?
首先对所有的检测结果排序,得分越高越靠前,然后依次判断检测是否成功。先求出检测结果dets和真实目标gts的iou值,并找出每一个det有最大iou值的gts,若这个最大的iou超过了一定的阈值,则det对这个gt匹配,视为TP,注意每一个gt只能被匹配一次。若某个det对所有的gt的iou都没有超过阈值,或者最大iou超过阈值的gt已经被匹配,则视为FP。得分从高到低遍历完所有的det之后,若仍有gt没有匹配,则视为FN。
得到TP、FP、FN之后,通过precision=TP/(TP+FP)和recall=TP/(TP+FN)可以计算出精确率和召回率。但是不同任务对于精确度和召回率的要求不一样,有些任务要求更高的recall,“错检”是可以接受的,而有些任务要求更高的precision,“漏检”是可以接受的。为了对recall和precision进行整体的评估,我们选取排好序的det前n个(n=1,2,3…),从而得到一条recall-precision曲线图,通过计算这条曲线下的面积得到AP值。
对每个类别的AP值取平均即可得到mAP。
具体的计算步骤:
- 首先将每一张图片对应的某个类别的预测值和标注信息提取出来。
- 对于每一张图片求其TP和FP。将bboxes按照分数进行排序,然后计算bboxes与gts之间的iou值,找出与bbox有最大iou值的gt框,从分数最高的bbox开始,若bbox与gt的最大iou值大于阈值,则将gt与这个bbox匹配,tp[gt]=1,(注意,每一个gt框只能被一个bbox匹配)。其余情况下,fp[gt]=1。
- 得到所有图片的某一类别的tp和fp(由0,1组成的数组,对应每个bbox是tp还是fp)合并成一个数组,并将其按照bbox的分数从大到小进行排序,再将排序后的tp和fp进行累加得到中间结果数组(保存了限制det的不同数量下的tp和fp数量)。
- 根据recalls=tp/gts_num、precisions=tp/(tp+fp)计算出召回率和精确率的数组(不同dets数量的限制)。
- 使用11points(11点插值法)或者area方法求AP值。
- 将计算得到的各个类别的AP值取平均得到mAP值。
详细代码
import numpy as np
from multiprocessing import Pool
def eval_map(det_results, annotations, iou_thr=0.5, nproc=4):
'''
Params:
det_results(List[List]): [[cls1_det, cls2_det, ...], ...]. #包含每一张图片每一个类别的预测结果
annotations(List[dict]): #包含每一张图片的数据标注
dict = {
'bboxes':(ndarray) shape(n,4)
'labels':(ndarray) shape(n)
}
'''
assert len(det_results) == len(annotations)
num_imgs = len(det_results)
num_scales = 1
num_classes = len(det_results[0])
area_ranges = None
pool = Pool(nproc)
eval_results = []
for i in range(num_classes):
cls_dets, cls_gts = get_cls_results(det_results, annotations, i)
tpfp = pool.starmap(
get_tpfp, zip(cls_dets, cls_gts, [iou_thr for _ in range(num_imgs)])
)
tp,fp = tuple(zip(*tpfp))
num_gts = np.zeros(num_scales, dtype=int)
for j, bbox in enumerate(cls_gts):
num_gts[0] += bbox.shape[0]
cls_dets = np.vstack(cls_dets)
num_dets = cls_dets.shape[0]
sort_inds = np.argsort(-cls_dets[:, -1])
tp = np.hstack(tp)[sort_inds] #按分数从大到小排序
fp = np.hstack(fp)[sort_inds]
tp = np.cumsum(tp) #数组累加
fp = np.cumsum(fp)
eps = np.finfo(np.float32).eps
recalls = tp/np.maximum(num_gts[0], eps)
precisions = tp/np.maximum((tp+fp), eps)
num_gts = num_gts.item()
#print(recalls, precisions)
ap = average_precisions(recalls, precisions, mode='11points')
eval_results.append({
'num_gts': num_gts,
'num_dets': num_dets,
'recall': recalls,
'precision': precisions,
'ap': ap
})
pool.close()
aps = []
for cls_result in eval_results:
if cls_result['num_gts'] > 0:
aps.append(cls_result['ap'])
mean_ap = np.array(aps).mean().item() if aps else 0.0
return mean_ap, eval_results
def get_cls_results(det_results, annotations, class_id):
'''
Params:
det_results(List[List]):[[cls1_det, cls2_det, ...], ...].
annotations(List[dict])
Return:
'''
cls_dets = [img_res[class_id] for img_res in det_results]
cls_gts = []
for ann in annotations:
gt_inds = ann['labels'] == class_id+1
cls_gts.append(ann['bboxes'][gt_inds, :])
return cls_dets, cls_gts
def get_tpfp(det_bboxes, gt_bboxes, iou_thr=0.5): #每一张图片的tpfp
'''
Params:
det_bboxes(ndarray): shape(m,5) #前4个是坐标,最后1个是分数
gt_bboxes(ndarray): shape(n,4)
'''
num_dets = det_bboxes.shape[0]
num_gts = gt_bboxes.shape[0]
tp = np.zeros((num_dets), dtype=np.float32)
fp = np.zeros((num_dets), dtype=np.float32)
if gt_bboxes.shape[0] == 0:
fp[...] = 1
return tp, fp
ious = bbox_overlaps(det_bboxes[:,:-1], gt_bboxes)
ious_max = ious.max(axis=1) #找出每个预测框有最大IoU值的真实框
ious_argmax = ious.argmax(axis=1)
sort_inds = np.argsort(-det_bboxes[:,-1])
gt_covered = np.zeros(num_gts, dtype=bool)
for i in sort_inds:
if ious_max[i] >= iou_thr:
matched_gt = ious_argmax[i] #匹配对应的真实框
if not gt_covered[matched_gt]: #若真实框没有被匹配,则匹配之
gt_covered[matched_gt] = True
tp[i] = 1
else:
fp[i] = 1
else:
fp[i] = 1
return tp, fp
def bbox_overlaps(bboxes1, bboxes2, eps=1e-6):
"""Calculate the ious between each bbox of bboxes1 and bboxes2.
Args:
bboxes1(ndarray): shape (n, 4)
bboxes2(ndarray): shape (k, 4)
Returns:
ious(ndarray): shape (n, k)
"""
bboxes1 = bboxes1.astype(np.float32)
bboxes2 = bboxes2.astype(np.float32)
rows = bboxes1.shape[0]
cols = bboxes2.shape[0]
ious = np.zeros((rows, cols), dtype=np.float32)
if rows * cols == 0:
return ious
exchange = False
if bboxes1.shape[0] > bboxes2.shape[0]:
bboxes1, bboxes2 = bboxes2, bboxes1
ious = np.zeros((cols, rows), dtype=np.float32)
exchange = True
area1 = (bboxes1[:, 2] - bboxes1[:, 0]) * (bboxes1[:, 3] - bboxes1[:, 1])
area2 = (bboxes2[:, 2] - bboxes2[:, 0]) * (bboxes2[:, 3] - bboxes2[:, 1])
for i in range(bboxes1.shape[0]):
x_start = np.maximum(bboxes1[i, 0], bboxes2[:, 0])
y_start = np.maximum(bboxes1[i, 1], bboxes2[:, 1])
x_end = np.minimum(bboxes1[i, 2], bboxes2[:, 2])
y_end = np.minimum(bboxes1[i, 3], bboxes2[:, 3])
overlap = np.maximum(x_end - x_start, 0) * np.maximum(
y_end - y_start, 0)
union = area1[i] + area2 - overlap
union = np.maximum(union, eps)
ious[i, :] = overlap / union
if exchange:
ious = ious.T
return ious
def average_precisions(recalls, precisions, mode='area'):
'''
Params:
recalls(ndarray): shape(num_dets)
precisions(ndarray): shape(num_dets)
'''
assert recalls.shape == precisions.shape
ap = np.zeros(1,dtype=np.float32)
if mode == 'area':
zero = np.zeros(1, dtype=recalls.dtype)
one = np.ones(1, dtype=recalls.dtype)
mrec = np.hstack((zero, recalls, one))
mpre = np.hstack((zero, precisions, zero))
for i in range(mpre.shape[0]-1, 0, -1):
mpre[i-1] = np.max(mpre[i-1], mpre[i])
ind = np.where(mrec[1:] != mrec[:-1])[0]
ap[0] = np.sum((mrec[ind+1] - mrec[ind]) * mpre[ind+1])
elif mode == '11points':
for thr in np.arange(0, 1+1e-3, 0.1):
precs = precisions[recalls >= thr]
prec = precs.max() if precs.size > 0 else 0
ap[0] += prec
ap[0] /= 11
return ap[0]
def show_mAP_table(eval_results, mAP):
label_len = len('classes')
dets_len = len('dets')
gts_len = len('gts')
for i, res in enumerate(eval_results):
label_len = max(len(labels[i]), label_len)
dets_len = max(len(str(res['num_dets'])), dets_len)
gts_len = max(len(str(res['num_gts'])), gts_len)
s1 = '+' + (label_len+2)*'-' + '+' + (dets_len+2)*'-' + '+' + (gts_len+2)*'-' + '+' + 7*'-' + '+'
header = '| classes' + (label_len-6)*' ' + '|' + ' dets' + (dets_len-3)*' ' + '|' + ' gts' + (gts_len-2)*' ' + '|' +' mAP ' + '|'
print(s1)
print(header)
print(s1)
for i ,res in enumerate(eval_results):
l_len = len(labels[i])
d_len = len(str(res['num_dets']))
g_len = len(str(res['num_gts']))
ap = "{:.3f}".format(res['ap'])
content = '| ' + labels[i] + (label_len-l_len+1)*' ' + '| ' + str(res['num_dets']) + (dets_len-d_len+1)*' ' + '| ' + str(res['num_gts']) + (gts_len-g_len+1)*' ' + '| ' + str(ap) + ' |'
print(content)
print(s1)
mAP = "{:.3f}".format(mAP)
content = '| mAP' + (label_len-2)*' ' + '|' + (dets_len+2)*' ' + '|' + (gts_len+2)*' ' + '| ' + str(mAP) + ' |'
print(content)
print(s1)
更多推荐
所有评论(0)