想学习深度学习需要什么样的基础

很多小伙伴对深度学习的理解都有一些误解,今天就为你一一解答。很多人第一反应是深度学习特别高大上,需要一定基础才能学习,但是关于需要学习深度学习所需要的基础其实存在很多误区。

迷茫于在网上虽然能找到各类深度学习课程和资料,但是是不是适合自己,如何能在一堆里面找到系统的、深入的、落地的学习内容,这对很多人来说都是横在学习面前的一道坎。

我们经过2个月的精心打磨,生产出这样一门适合基础研发人员也能学习的课程,它能在这以下几个方面回答大家对于深度学习的疑惑。关于编程基础只会Java语言,不会C/C++/Python能学习吗?

或者学过C/C++/Python,但是没有实际应用过,或者基础不好,是否可以学?是否有Python学习教程推荐?如果C++/Python基础比较薄弱,是否可以学?【回答】完全可以。

我们会跟随实际的代码编写,一步一步进行指导。

在数据科学、大数据和机器学习(深度学习)领域,Python被视作最为简洁和直接的脚本编程语言,被科研领域和工程领域广泛采用,因此本课程也会针对Python编程语言本身,跟随编程实战,与大家一起编程的过程中逐步讲解。

事实上Java编程语言在大数据处理和机器学习领域的应用也十分广泛,课程中涉及到真实工程代码的部分,我们会将C++与Java版本一同展示和讲解。

由于这不是一门教学编程语言的课程,更注重于实际应用的编写,因此编程语言特性方面的门槛较低。本课程着眼于海量数据实时处理和深度神经网络架构和编程,编程语言这块不会是瓶颈。

并且,大家会跟随老师一起,编写机器学习代码,也会因此熟悉Python编程,事实上这对未来的个人发展和工作具有非常大的帮助。

在课程后半段,我们将会使用前半段课程编写的实验程序,转化为实际的工业级代码和产品,这时将涉及C/C++和Java代码的编写。

由于Java在面向对象的基本结构上与C++十分相似,因此这一块也应当不是问题。正如前面所阐述的,我们也会同时展示Java版本的高层应用实现。

最终,同学们会发现这些代码虽然由不同编程语言实现,但大体相当,并无过多区别。另外,针对编程语言方面的疑虑,老师也会手把手从最基本的代码开始编写,并尽可能详细讲解每一段重要的代码。

全课程不仅从理论方面会由浅入深的讲解,编程实战也同样会从最基础部分(包含语言的部分)开始讲解。希望能够打消同学们的疑虑。

通过学习本课程,不仅对整个机器学习、深度学习和分布式大数据实时处理有一个全面的认识,而且在非常实际的工程实践,将来找工作和职业发展,都将会有非常大的提升。

如果有其他语言的基础,但是没有C++和python基础也是完全可以学习的,语言只是工具,有其他语言基础学习新语言很快,尤其是Python这种语言很简单,而Java和C++相比之下可能需要花费更多时间去学习。

但本门课程在工程实践环节也会针对编写的代码进行详解,尽可能确保打消大家对这一方面的顾虑。这个课需要大数据基础吗?【回答】不需要。

本门课程不仅会讲解机器学习领域的经典理论、算法和工程实践,还有一大特色便是讲解大数据或海量数据的高性能分布式处理,通过这两大领域的学习和碰撞,会为大家未来职业发展和规划起到如虎添翼的作用,这一点在其他课程中较难体现,也是本门课程的主要特色之一。

本课程的老师拥有多年云计算和分布式实时处理方面的经验,同时撰写了相关书籍以及开源的大数据处理框架,拥有丰富经验,以此基础上再讲解机器学习和深度神经网络,让同学们对这一领域的几个关键点都一个较为全面的学习和掌握。

关于数学基础有的同学有数学基础,但是缺乏C++/Python编程语言;有的同学没有数学基础,是否可以学?数学基础需要到什么程度?如果提前学习是否有资料推荐?

【回答】首先学习本门课程并不需要特别高的数学基础,只需要掌握大学本科阶段学习的高等数学、线性代数和概率论等课程。

虽然从应用角度上来看:如果想要深入研究深度学习,比如完全自己实现不同结构的网络,设计网络的层与参数最好能够熟练运用矩阵理论中的相关工具,但是我相信如果职业道路规划不是算法工程师,一般并不会深入到这一层面。

对应于不同应用领域,还需要不同的数学工具,比如和图像、信号识别相关的领域,图形学等相关的基础功底是必须要有的,但这个已经是复杂的现实应用问题了,并不在本门课程的教学范围之内,本门课程的应用领域还是相对较为简单的。

实际上,如果你是一个工科生,你会发现学习数学最难的地方就是不理解这些数学工具到底能帮助我们去解决什么问题,因为大学老师大多数都是数学专业老师,并不会从学生各自专业的角度来讲解数学问题。

但是当你知道你需要用数学工具做什么,有一个明确目标后,你会发现你的动力和学习能力将会有一个突破,你不会觉得这些数学知识是枯燥乏味的。

因此哪怕你的数学基础相对薄弱,有一个明确的目的,再去补充这些数学知识,相信学员自己一定能解决这个问题。数学也绝对不是学习这门课的障碍,但是如果你想以其作为职业,去打好这个数学的底子是不可或缺的。

最后,如果你是数学专业,或者觉得自己数学很好的学生,你们也更不用担心不会1、2门语言,因为计算机语言只是一种工具,最关键的还是训练自己的思维,这种思维的核心就是数学和算法。

如果你数学很好,学习这些语言是很快的,而且本门课程中除了最后的C++开发,也不会应用到什么特别的语法特性。但是另一方面也不要忽视学习好这些工具的重要性,只是希望学生自己能够权衡。

对数学好的同学来说,可能最致命的是一个误区,因为计算机的基础是数学,所以完全使用数学思维去解决计算机问题是没问题的,我这里只能说计算机有自己的思维模式,哪怕是那些基于数学原理的算法问题,所以数学专业的同学必须要学会认识到这种思维的差异并学会使用计算机的思维来解决问题,而机器学习则是计算机思维的一个典型代表,这个将会在课程中具体讨论。

至于需要的数学基础,肯定是希望同学能够学习高等数学中的微积分,线性代数和概率论的相关知识,对于没有实际编程经验的学生则推荐深入学习一下离散数学(无关乎是否精于数学)。

本门课程需要的数学基础也就是这些了。关于内容深度学习和机器学习的关系是什么?很多同学以为要先学机器学习再学深度学习是这样吗?

【回答】机器学习肯定是深度学习的基础,因为深度学习就是深度神经网络,而人工神经网络则是机器学习的一大经典模型。

但是我们要认识到机器学习领域包含的算法和模型太多,因此想要专精深度学习不一定要学会其他许多的机器学习算法和理论。

所以我们会在课程中安排机器学习相关的内容,只不过都是机器学习中和深度学习相关的必备基础知识。

但是如果你想要以后往算法工程师发展,去学习熟悉其他的机器学习模型也是必不可少的,只不过本门课程并没有这种要求,所有需要的机器学习知识都会在课程的前半部分详细讲解。

Caffe框架和TensorFlow框架都要学吗?【回答】首先本门课程主要应用的是Caffe,但是同样会讲解TensorFlow的基本用法,并会进行简单演示。

在我们的日常工作中发现TensorFlow是目前最强大的机器学习框架,没有之一,而且有Google公司的支持,有最庞大的社区,一旦有什么新模型都会有TensorFlow的实现可以使用(得益于TensorFlow的架构设计)。

用TensorFlow来进行快速实验是非常好的选择。

但是我们也发现TensorFlow有两个比较大的问题,第一个问题是TensorFlow的单机执行效率低,尤其是和Caffe相比,对于资金并不是很充足的创业公司,在有一定量数据的情况下,并无法支撑一个可以快速运行TensorFlow训练的集群,这个时候Caffe以及其各种改版往往是更好的选择,而我们日常工作的实验场景就被此局限,因此更偏向于实际使用Caffe。

第二个问题是TensorFlow过于庞大,实际开发产品SDK的时候,我们希望训练出来的模型能够直接放到产品中使用,因此训练和产品SDK使用的深度学习框架往往是一致或者可以互相转换的。

而TensorFlow过于庞大复杂,还需要使用专门的构建工具,在实际产品应用集成中往往要使用能够完全掌控的工具和框架并进行修改,TensorFlow的复杂性正和这种要求背道而驰。

当然也可能是我们的工作场景和人员限制导致我们没有人力对TensorFlow进行深度研究、裁剪和维护,这也就是我们产品中使用Caffe的原因。

关于就业学习了课程,掌握了这个技能,能不能找到工作,是否有匹配的岗位?【回答】肯定可以!

不过自己平时更多地去实践是成为某一领域专家的必经之路,这门课程的最大作用之一是让你知道该去学习什么,还有学习的思路、方法,以及平时难以接触到的大型企业实际的工程经验和架构方法,这将对同学们的未来工作和职业发展提供极大帮助。

通过学习本课程,可以匹配到以下几个岗位:这个实际岗位在很多公司中往往是算法工程师大数据分析和处理方面的岗位云计算应用或平台的开发工程师机器学习或深度学习应用或平台的研发工程师而算法工程部门的工程师一般会有两类人(除去部门负责人等高级职位):一类是能够较熟练运用1到2门语言(比如Python、Java或C++),数学功底好,熟悉机器学习和深度学习的人,他们的任务是不断优化机器学习模型,进行训练测试,调整参数等,这个过程中也需要编写相当多的脚本来帮助自己解决各种问题。

最后要能够编写实际的产品代码,不需要有非常好的架构和设计思想,关键是能够高效地实现某种算法。

一类是有好的编程功底,同时又能够基本理解机器学习和深度学习的人,他们的任务往往是负责封装改良第一类人实现的功能模块,从时间、空间和代码质量上改良模块的实现,同时负责维护完整的算法SDK,这类SDK往往要求能够快速迭代更新,能够配上完整的训练和测试流程,需要开发者具有较强的工程能力还有架构、设计思维。

至于岗位问题同学应该完全不用担心,尤其现在有许多以人工智能为核心的公司如爆发式增长,以及传统IT企业向海量数据处理、机器学习和深度学习领域不断加大投入,对这类工程师的需求量极大。

大公司还是小公司需要这种岗位?机器学习工程师的薪资待遇如何?现在大公司和小公司都有,尤其是以人工智能为主的公司。

至于岗位问题同学应该完全不用担心,尤其现在有许多以人工智能为核心的公司如爆发式增长,以及传统IT企业向海量数据处理、机器学习和深度学习领域不断加大投入,对这类工程师的需求量极大。

至于薪资待遇方面,由于目前以及可预期的未来很长一段时间,这类岗位的需求和缺口都非常大,相信同学们在学习完本课程后,再加上自己对该领域的实践和工作经验,能够获得高于市场的薪酬水平。

谷歌人工智能写作项目:神经网络伪原创

深度学习需要哪些基础知识?

数学基础如果你能够顺畅地读懂深度学习论文中的数学公式,可以独立地推导新方法,则表明你已经具备了必要的数学基础写作猫

掌握数学分析、线性代数、概率论和凸优化四门数学课程包含的数学知识,熟知机器学习的基本理论和方法,是入门深度学习技术的前提。

因为无论是理解深度网络中各个层的运算和梯度推导,还是进行问题的形式化或是推导损失函数,都离不开扎实的数学与机器学习基础。数学分析在工科专业所开设的高等数学课程中,主要学习的内容为微积分。

对于一般的深度学习研究和应用来说,需要重点温习函数与极限、导数(特别是复合函数求导)、微分、积分、幂级数展开、微分方程等基础知识。在深度学习的优化过程中,求解函数的一阶导数是最为基础的工作。

当提到微分中值定理、Taylor公式和拉格朗日乘子的时候,你不应该只是感到与它们似曾相识。线性代数深度学习中的运算常常被表示成向量和矩阵运算。线性代数正是这样一门以向量和矩阵作为研究对象的数学分支。

需要重点温习的包括向量、线性空间、线性方程组、矩阵、矩阵运算及其性质、向量微积分。

当提到Jacobian矩阵和Hessian矩阵的时候,你需要知道确切的数学形式;当给出一个矩阵形式的损失函数时,你可以很轻松的求解梯度。

概率论概率论是研究随机现象数量规律的数学分支,随机变量在深度学习中有很多应用,无论是随机梯度下降、参数初始化方法(如Xavier),还是Dropout正则化算法,都离不开概率论的理论支撑。

除了掌握随机现象的基本概念(如随机试验、样本空间、概率、条件概率等)、随机变量及其分布之外,还需要对大数定律及中心极限定理、参数估计、假设检验等内容有所了解,进一步还可以深入学习一点随机过程、马尔可夫随机链的内容。

凸优化结合以上三门基础的数学课程,凸优化可以说是一门应用课程。

但对于深度学习而言,由于常用的深度学习优化方法往往只利用了一阶的梯度信息进行随机梯度下降,因而从业者事实上并不需要多少“高深”的凸优化知识。

理解凸集、凸函数、凸优化的基本概念,掌握对偶问题的一般概念,掌握常见的无约束优化方法如梯度下降方法、随机梯度下降方法、Newton方法,了解一点等式约束优化和不等式约束优化方法,即可满足理解深度学习中优化方法的理论要求。

机器学习归根结底,深度学习只是机器学习方法的一种,而统计机器学习则是机器学习领域事实上的方法论。

以监督学习为例,需要你掌握线性模型的回归与分类、支持向量机与核方法、随机森林方法等具有代表性的机器学习技术,并了解模型选择与模型推理、模型正则化技术、模型集成、Bootstrap方法、概率图模型等。

深入一步的话,还需要了解半监督学习、无监督学习和强化学习等专门技术。

昆明电脑培训分享人工智能深度学习的基础知识

在提及人工智能技术的时候,对于深度学习的概念我们就需要了解,只有这样才能更加容易理解人工智能的运行原理,今天,昆明电脑培训就一起来了解一下深度学习的一些基础知识。

首先,什么是学习率?学习率(LearningRate,LR。常用η表示。)是一个超参数,考虑到损失梯度,它控制着我们在多大程度上调整网络的权重。值越低,沿着向下的斜率就越慢。

虽然这可能是一个好主意(使用低学习率),以确保我们不会错过任何局部最小值;但也有可能意味着我们将耗费很久的时间来收敛——特别是当我们陷入平坦区(plateauregion)的时候。

有没有更好的方法来确定学习率?在“训练神经网络的循环学习率(CyclicalLearningRates(CLR)forTrainingNeuralNetworks)”[4]的第3.3节中。

LeslieN.Smith认为,通过在每次迭代中以非常低的学习率来增加(线性或指数)的方式训练模型,可以估计好的学习率。

精益求精在这个关键时刻,我们已经讨论了学习率的全部内容和它的重要性,以及我们如何在开始训练模型时系统地达到使用价值。接下来,我们将讨论如何使用学习率来提高模型的性能。

一般看法通常情况下,当一个人设定学习率并训练模型时,只有等待学习率随着时间的推移而降低,并且模型会收敛。然而,随着梯度逐渐趋于稳定时,训练损失也变得难以改善。

在[3]中,Dauphin等人认为,尽可能地减少损失的难度来自于鞍点,而非局部极小值。迁移学习(TransferLearning)中的学习率在课程中,在解决AI问题时,非常重视利用预先训练的模型。

例如,在解决图像分类问题时,教授学生如何使用预先训练好的模型,如VGG或Resnet50,并将其连接到想要预测的任何图像数据集。

什么是差分学习?这是一种在训练期间为网络中的不同层设置不同的学习率的方法。这与人们通常如何配置学习率相反,即在训练期间在整个网络中使用相同的速率。

简述深度学习的基本方法。

深度学习,需要怎么做到?

最佳答案1、深度学习,首先要学会给自己定定目标(大、小、长、短),这样学习会有一个方向;然后要学会梳理自身学习情况,以课本为基础,结合自己做的笔记、试卷、掌握的薄弱环节、存在的问题等,合理的分配时间,有针对性、具体的去一点一点的去攻克、落实。

2、可以学习掌握速读记忆的能力,提高学习复习效率。速读记忆是一种高效的学习、复习方法,其训练原理就在于激活“脑、眼”潜能,培养形成眼脑直映式的阅读、学习方式。

速读记忆的练习见《精英特全脑速读记忆训练》,用软件练习,每天一个多小时,一个月的时间,可以把阅读速度提高5、6倍,记忆力、注意力、思维、理解力等也会得到相应的提高,最终提高学习、复习效率,取得好成绩。

如果你的阅读、学习效率低的话,可以好好的去练习一下。3、要学会整合知识点。把需要学习的信息、掌握的知识分类,做成思维导图或知识点卡片,会让你的大脑、思维条理清醒,方便记忆、温习、掌握。

同时,要学会把新知识和已学知识联系起来,不断糅合、完善你的知识体系。这样能够促进理解,加深记忆。4、做题的时候要学会反思、归类、整理出对应的解题思路。

遇到错的题(粗心做错也好、不会做也罢),最好能把这些错题收集起来,每个科目都建立一个独立的错题集(错题集要归类),当我们进行考前复习的时候,它们是重点复习对象,保证不再同样的问题上再出错、再丢分。

神经网络(深度学习)的几个基础概念

从广义上说深度学习的网络结构也是多层神经网络的一种。传统意义上的多层神经网络是只有输入层、隐藏层、输出层。其中隐藏层的层数根据需要而定,没有明确的理论推导来说明到底多少层合适。

而深度学习中最著名的卷积神经网络CNN,在原来多层神经网络的基础上,加入了特征学习部分,这部分是模仿人脑对信号处理上的分级的。

具体操作就是在原来的全连接的层前面加入了部分连接的卷积层与降维层,而且加入的是一个层级。

输入层-卷积层-降维层-卷积层-降维层--....--隐藏层-输出层简单来说,原来多层神经网络做的步骤是:特征映射到值。特征是人工挑选。深度学习做的步骤是信号->特征->值。

特征是由网络自己选择。

人工智能,机器学习与深度学习,到底是什么关系

有人说,人工智能(AI)是未来,人工智能是科幻,人工智能也是我们日常生活中的一部分。这些评价可以说都是正确的,就看你指的是哪一种人工智能。

今年早些时候,GoogleDeepMind的AlphaGo打败了韩国的围棋大师李世乭九段。

在媒体描述DeepMind胜利的时候,将人工智能(AI)、机器学习(machinelearning)和深度学习(deeplearning)都用上了。

这三者在AlphaGo击败李世乭的过程中都起了作用,但它们说的并不是一回事。今天我们就用最简单的方法——同心圆,可视化地展现出它们三者的关系和应用。

向左转|向右转如上图,人工智能是最早出现的,也是最大、最外侧的同心圆;其次是机器学习,稍晚一点;最内侧,是深度学习,当今人工智能大爆炸的核心驱动。五十年代,人工智能曾一度被极为看好。

之后,人工智能的一些较小的子集发展了起来。先是机器学习,然后是深度学习。深度学习又是机器学习的子集。深度学习造成了前所未有的巨大的影响。

从概念的提出到走向繁荣1956年,几个计算机科学家相聚在达特茅斯会议(DartmouthConferences),提出了“人工智能”的概念。

其后,人工智能就一直萦绕于人们的脑海之中,并在科研实验室中慢慢孵化。之后的几十年,人工智能一直在两极反转,或被称作人类文明耀眼未来的预言;或者被当成技术疯子的狂想扔到垃圾堆里。

坦白说,直到2012年之前,这两种声音还在同时存在。过去几年,尤其是2015年以来,人工智能开始大爆发。很大一部分是由于GPU的广泛应用,使得并行计算变得更快、更便宜、更有效。

当然,无限拓展的存储能力和骤然爆发的数据洪流(大数据)的组合拳,也使得图像数据、文本数据、交易数据、映射数据全面海量爆发。

让我们慢慢梳理一下计算机科学家们是如何将人工智能从最早的一点点苗头,发展到能够支撑那些每天被数亿用户使用的应用的。

| 人工智能(ArtificialIntelligence)——为机器赋予人的智能向左转|向右转早在1956年夏天那次会议,人工智能的先驱们就梦想着用当时刚刚出现的计算机来构造复杂的、拥有与人类智慧同样本质特性的机器。

这就是我们现在所说的“强人工智能”(GeneralAI)。这个无所不能的机器,它有着我们所有的感知(甚至比人更多),我们所有的理性,可以像我们一样思考。

人们在电影里也总是看到这样的机器:友好的,像星球大战中的C-3PO;邪恶的,如终结者。强人工智能现在还只存在于电影和科幻小说中,原因不难理解,我们还没法实现它们,至少目前还不行。

我们目前能实现的,一般被称为“弱人工智能”(NarrowAI)。弱人工智能是能够与人一样,甚至比人更好地执行特定任务的技术。例如,Pinterest上的图像分类;或者Facebook的人脸识别。

这些是弱人工智能在实践中的例子。这些技术实现的是人类智能的一些具体的局部。但它们是如何实现的?这种智能是从何而来?这就带我们来到同心圆的里面一层,机器学习。

| 机器学习——一种实现人工智能的方法向左转|向右转机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。

与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。机器学习直接来源于早期的人工智能领域。

传统算法包括决策树学习、推导逻辑规划、聚类、强化学习和贝叶斯网络等等。众所周知,我们还没有实现强人工智能。早期机器学习方法甚至都无法实现弱人工智能。

机器学习最成功的应用领域是计算机视觉,虽然也还是需要大量的手工编码来完成工作。

人们需要手工编写分类器、边缘检测滤波器,以便让程序能识别物体从哪里开始,到哪里结束;写形状检测程序来判断检测对象是不是有八条边;写分类器来识别字母“ST-O-P”。

使用以上这些手工编写的分类器,人们总算可以开发算法来感知图像,判断图像是不是一个停止标志牌。这个结果还算不错,但并不是那种能让人为之一振的成功。

特别是遇到云雾天,标志牌变得不是那么清晰可见,又或者被树遮挡一部分,算法就难以成功了。这就是为什么前一段时间,计算机视觉的性能一直无法接近到人的能力。它太僵化,太容易受环境条件的干扰。

随着时间的推进,学习算法的发展改变了一切。

| 深度学习——一种实现机器学习的技术向左转|向右转人工神经网络(ArtificialNeuralNetworks)是早期机器学习中的一个重要的算法,历经数十年风风雨雨。

神经网络的原理是受我们大脑的生理结构——互相交叉相连的神经元启发。但与大脑中一个神经元可以连接一定距离内的任意神经元不同,人工神经网络具有离散的层、连接和数据传播的方向。

例如,我们可以把一幅图像切分成图像块,输入到神经网络的第一层。在第一层的每一个神经元都把数据传递到第二层。第二层的神经元也是完成类似的工作,把数据传递到第三层,以此类推,直到最后一层,然后生成结果。

每一个神经元都为它的输入分配权重,这个权重的正确与否与其执行的任务直接相关。最终的输出由这些权重加总来决定。我们仍以停止(Stop)标志牌为例。

将一个停止标志牌图像的所有元素都打碎,然后用神经元进行“检查”:八边形的外形、救火车般的红颜色、鲜明突出的字母、交通标志的典型尺寸和静止不动运动特性等等。

神经网络的任务就是给出结论,它到底是不是一个停止标志牌。神经网络会根据所有权重,给出一个经过深思熟虑的猜测——“概率向量”。

这个例子里,系统可能会给出这样的结果:86%可能是一个停止标志牌;7%的可能是一个限速标志牌;5%的可能是一个风筝挂在树上等等。然后网络结构告知神经网络,它的结论是否正确。

即使是这个例子,也算是比较超前了。直到前不久,神经网络也还是为人工智能圈所淡忘。其实在人工智能出现的早期,神经网络就已经存在了,但神经网络对于“智能”的贡献微乎其微。

主要问题是,即使是最基本的神经网络,也需要大量的运算。神经网络算法的运算需求难以得到满足。

不过,还是有一些虔诚的研究团队,以多伦多大学的GeoffreyHinton为代表,坚持研究,实现了以超算为目标的并行算法的运行与概念证明。但也直到GPU得到广泛应用,这些努力才见到成效。

我们回过头来看这个停止标志识别的例子。神经网络是调制、训练出来的,时不时还是很容易出错的。它最需要的,就是训练。

需要成百上千甚至几百万张图像来训练,直到神经元的输入的权值都被调制得十分精确,无论是否有雾,晴天还是雨天,每次都能得到正确的结果。

只有这个时候,我们才可以说神经网络成功地自学习到一个停止标志的样子;或者在Facebook的应用里,神经网络自学习了你妈妈的脸;又或者是2012年吴恩达(AndrewNg)教授在Google实现了神经网络学习到猫的样子等等。

吴教授的突破在于,把这些神经网络从基础上显著地增大了。层数非常多,神经元也非常多,然后给系统输入海量的数据,来训练网络。在吴教授这里,数据是一千万YouTube视频中的图像。

吴教授为深度学习(deeplearning)加入了“深度”(deep)。这里的“深度”就是说神经网络中众多的层。

现在,经过深度学习训练的图像识别,在一些场景中甚至可以比人做得更好:从识别猫,到辨别血液中癌症的早期成分,到识别核磁共振成像中的肿瘤。

Google的AlphaGo先是学会了如何下围棋,然后与它自己下棋训练。它训练自己神经网络的方法,就是不断地与自己下棋,反复地下,永不停歇。

| 深度学习,给人工智能以璀璨的未来深度学习使得机器学习能够实现众多的应用,并拓展了人工智能的领域范围。深度学习摧枯拉朽般地实现了各种任务,使得似乎所有的机器辅助功能都变为可能。

无人驾驶汽车,预防性医疗保健,甚至是更好的电影推荐,都近在眼前,或者即将实现。人工智能就在现在,就在明天。有了深度学习,人工智能甚至可以达到我们畅想的科幻小说一般。

你的C-3PO我拿走了,你有你的终结者就好了。

深度学习中什么是人工神经网络?

人工神经网络(ArtificialNeuralNetwork,即ANN)是从信息处理角度对人脑神经元网络进行抽象,是20世纪80年代以来人工智能领域兴起的研究热点,其本质是一种运算模型,由大量的节点(或称神经元)之间相互联接构成,在模式识别、智能机器人、自动控制、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性。

人工神经网络是由大量处理单元互联组成的非线性、自适应信息处理系统,它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。

人工神经网络具有四个基本特征:(1)非线性–非线性关系是自然界的普遍特性,人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性人工神经网络关系。

具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。(2)非局限性–一个神经网络通常由多个神经元广泛连接而成。

一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。联想记忆是非局限性的典型例子。

(3)非常定性–人工神经网络具有自适应、自组织、自学习能力。神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。经常采用迭代过程描写动力系统的演化过程。

(4)非凸性–一个系统的演化方向,在一定条件下将取决于某个特定的状态函数。例如能量函数,它的极值相应于系统比较稳定的状态。

非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性。人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。

网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能人工神经网络由系统外部观察的单元。

神经元间的连接权值反映了单元间的连接强度,信息的表示和处理体现在网络处理单元的连接关系中。

总结:人工神经网络是一种非程序化、适应性、大脑风格的信息处理,其本质是通过网络的变换和动力学行为得到一种并行分布式的信息处理功能,并在不同程度和层次上模仿人脑神经系统的信息处理功能。

深度学习和神经网络的区别是什么

这两个概念实际上是互相交叉的,例如,卷积神经网络(Convolutionalneuralnetworks,简称CNNs)就是一种深度的监督学习下的机器学习模型,而深度置信网(DeepBeliefNets,简称DBNs)就是一种无监督学习下的机器学习模型。

深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

深度学习的概念由Hinton等人于2006年提出。基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。

此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。

深度学习与神经网络有什么区别

深度学习与神经网络关系2017-01-10最近开始学习深度学习,基本上都是zouxy09博主的文章,写的蛮好,很全面,也会根据自己的思路,做下删减,细化。

五、DeepLearning的基本思想假设我们有一个系统S,它有n层(S1,…Sn),它的输入是I,输出是O,形象地表示为:I=>S1=>S2=>…..=>Sn=>O,如果输出O等于输入I,即输入I经过这个系统变化之后没有任何的信息损失(呵呵,大牛说,这是不可能的。

信息论中有个“信息逐层丢失”的说法(信息处理不等式),设处理a信息得到b,再对b处理得到c,那么可以证明:a和c的互信息不会超过a和b的互信息。这表明信息处理不会增加信息,大部分处理会丢失信息。

当然了,如果丢掉的是没用的信息那多好啊),保持了不变,这意味着输入I经过每一层Si都没有任何的信息损失,即在任何一层Si,它都是原有信息(即输入I)的另外一种表示。

现在回到我们的主题DeepLearning,我们需要自动地学习特征,假设我们有一堆输入I(如一堆图像或者文本),假设我们设计了一个系统S(有n层),我们通过调整系统中参数,使得它的输出仍然是输入I,那么我们就可以自动地获取得到输入I的一系列层次特征,即S1,…,Sn。

对于深度学习来说,其思想就是对堆叠多个层,也就是说这一层的输出作为下一层的输入。通过这种方式,就可以实现对输入信息进行分级表达了。

另外,前面是假设输出严格地等于输入,这个限制太严格,我们可以略微地放松这个限制,例如我们只要使得输入与输出的差别尽可能地小即可,这个放松会导致另外一类不同的DeepLearning方法。

上述就是DeepLearning的基本思想。六、浅层学习(ShallowLearning)和深度学习(DeepLearning)浅层学习是机器学习的第一次浪潮。

20世纪80年代末期,用于人工神经网络的反向传播算法(也叫BackPropagation算法或者BP算法)的发明,给机器学习带来了希望,掀起了基于统计模型的机器学习热潮。这个热潮一直持续到今天。

人们发现,利用BP算法可以让一个人工神经网络模型从大量训练样本中学习统计规律,从而对未知事件做预测。这种基于统计的机器学习方法比起过去基于人工规则的系统,在很多方面显出优越性。

这个时候的人工神经网络,虽也被称作多层感知机(Multi-layerPerceptron),但实际是种只含有一层隐层节点的浅层模型。

20世纪90年代,各种各样的浅层机器学习模型相继被提出,例如支撑向量机(SVM,SupportVectorMachines)、Boosting、最大熵方法(如LR,LogisticRegression)等。

这些模型的结构基本上可以看成带有一层隐层节点(如SVM、Boosting),或没有隐层节点(如LR)。这些模型无论是在理论分析还是应用中都获得了巨大的成功。

相比之下,由于理论分析的难度大,训练方法又需要很多经验和技巧,这个时期浅层人工神经网络反而相对沉寂。深度学习是机器学习的第二次浪潮。

2006年,加拿大多伦多大学教授、机器学习领域的泰斗GeoffreyHinton和他的学生RuslanSalakhutdinov在《科学》上发表了一篇文章,开启了深度学习在学术界和工业界的浪潮。

这篇文章有两个主要观点:1)多隐层的人工神经网络具有优异的特征学习能力,学习得到的特征对数据有更本质的刻画,从而有利于可视化或分类;2)深度神经网络在训练上的难度,可以通过“逐层初始化”(layer-wisepre-training)来有效克服,在这篇文章中,逐层初始化是通过无监督学习实现的。

当前多数分类、回归等学习方法为浅层结构算法,其局限性在于有限样本和计算单元情况下对复杂函数的表示能力有限,针对复杂分类问题其泛化能力受到一定制约。

深度学习可通过学习一种深层非线性网络结构,实现复杂函数逼近,表征输入数据分布式表示,并展现了强大的从少数样本集中学习数据集本质特征的能力。

(多层的好处是可以用较少的参数表示复杂的函数)深度学习的实质,是通过构建具有很多隐层的机器学习模型和海量的训练数据,来学习更有用的特征,从而最终提升分类或预测的准确性。

因此,“深度模型”是手段,“特征学习”是目的。

区别于传统的浅层学习,深度学习的不同在于:1)强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点;2)明确突出了特征学习的重要性,也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更加容易。

与人工规则构造特征的方法相比,利用大数据来学习特征,更能够刻画数据的丰富内在信息。

七、Deeplearning与NeuralNetwork深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。

深度学习是无监督学习的一种。深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

Deeplearning本身算是machinelearning的一个分支,简单可以理解为neuralnetwork的发展。

大约二三十年前,neuralnetwork曾经是ML领域特别火热的一个方向,但是后来确慢慢淡出了,原因包括以下几个方面:1)比较容易过拟合,参数比较难tune,而且需要不少trick;2)训练速度比较慢,在层次比较少(小于等于3)的情况下效果并不比其它方法更优;所以中间有大约20多年的时间,神经网络被关注很少,这段时间基本上是SVM和boosting算法的天下。

但是,一个痴心的老先生Hinton,他坚持了下来,并最终(和其它人一起Bengio、Yann.lecun等)提成了一个实际可行的deeplearning框架。

Deeplearning与传统的神经网络之间有相同的地方也有很多不同。

二者的相同在于deeplearning采用了神经网络相似的分层结构,系统由包括输入层、隐层(多层)、输出层组成的多层网络,只有相邻层节点之间有连接,同一层以及跨层节点之间相互无连接,每一层可以看作是一个logisticregression模型;这种分层结构,是比较接近人类大脑的结构的。

而为了克服神经网络训练中的问题,DL采用了与神经网络很不同的训练机制。

传统神经网络(这里作者主要指前向神经网络)中,采用的是backpropagation的方式进行,简单来讲就是采用迭代的算法来训练整个网络,随机设定初值,计算当前网络的输出,然后根据当前输出和label之间的差去改变前面各层的参数,直到收敛(整体是一个梯度下降法)。

而deeplearning整体上是一个layer-wise的训练机制。

这样做的原因是因为,如果采用backpropagation的机制,对于一个deepnetwork(7层以上),残差传播到最前面的层已经变得太小,出现所谓的gradientdiffusion(梯度扩散)。

这个问题我们接下来讨论。

八、Deeplearning训练过程8.1、传统神经网络的训练方法为什么不能用在深度神经网络BP算法作为传统训练多层网络的典型算法,实际上对仅含几层网络,该训练方法就已经很不理想。

深度结构(涉及多个非线性处理单元层)非凸目标代价函数中普遍存在的局部最小是训练困难的主要来源。

BP算法存在的问题:(1)梯度越来越稀疏:从顶层越往下,误差校正信号越来越小;(2)收敛到局部最小值:尤其是从远离最优区域开始的时候(随机值初始化会导致这种情况的发生);(3)一般,我们只能用有标签的数据来训练:但大部分的数据是没标签的,而大脑可以从没有标签的的数据中学习;8.2、deeplearning训练过程如果对所有层同时训练,时间复杂度会太高;如果每次训练一层,偏差就会逐层传递。

这会面临跟上面监督学习中相反的问题,会严重欠拟合(因为深度网络的神经元和参数太多了)。

2006年,hinton提出了在非监督数据上建立多层神经网络的一个有效方法,简单的说,分为两步,一是每次训练一层网络,二是调优,使原始表示x向上生成的高级表示r和该高级表示r向下生成的x'尽可能一致。

方法是:1)首先逐层构建单层神经元,这样每次都是训练一个单层网络。2)当所有层训练完后,Hinton使用wake-sleep算法进行调优。

将除最顶层的其它层间的权重变为双向的,这样最顶层仍然是一个单层神经网络,而其它层则变为了图模型。向上的权重用于“认知”,向下的权重用于“生成”。然后使用Wake-Sleep算法调整所有的权重。

让认知和生成达成一致,也就是保证生成的最顶层表示能够尽可能正确的复原底层的结点。

比如顶层的一个结点表示人脸,那么所有人脸的图像应该激活这个结点,并且这个结果向下生成的图像应该能够表现为一个大概的人脸图像。Wake-Sleep算法分为醒(wake)和睡(sleep)两个部分。

1)wake阶段:认知过程,通过外界的特征和向上的权重(认知权重)产生每一层的抽象表示(结点状态),并且使用梯度下降修改层间的下行权重(生成权重)。

也就是“如果现实跟我想象的不一样,改变我的权重使得我想象的东西就是这样的”。2)sleep阶段:生成过程,通过顶层表示(醒时学得的概念)和向下权重,生成底层的状态,同时修改层间向上的权重。

也就是“如果梦中的景象不是我脑中的相应概念,改变我的认知权重使得这种景象在我看来就是这个概念”。

deeplearning训练过程具体如下:1)使用自下上升非监督学习(就是从底层开始,一层一层的往顶层训练):采用无标定数据(有标定数据也可)分层训练各层参数,这一步可以看作是一个无监督训练过程,是和传统神经网络区别最大的部分(这个过程可以看作是featurelearning过程):具体的,先用无标定数据训练第一层,训练时先学习第一层的参数(这一层可以看作是得到一个使得输出和输入差别最小的三层神经网络的隐层),由于模型capacity的限制以及稀疏性约束,使得得到的模型能够学习到数据本身的结构,从而得到比输入更具有表示能力的特征;在学习得到第n-1层后,将n-1层的输出作为第n层的输入,训练第n层,由此分别得到各层的参数;2)自顶向下的监督学习(就是通过带标签的数据去训练,误差自顶向下传输,对网络进行微调):基于第一步得到的各层参数进一步fine-tune整个多层模型的参数,这一步是一个有监督训练过程;第一步类似神经网络的随机初始化初值过程,由于DL的第一步不是随机初始化,而是通过学习输入数据的结构得到的,因而这个初值更接近全局最优,从而能够取得更好的效果;所以deeplearning效果好很大程度上归功于第一步的featurelearning过程。

人工智能深度学习的基础知识?

在提及人工智能技术的时候,对于深度学习的概念我们就需要了解,只有这样才能更加容易理解人工智能的运行原理,今天,昆明电脑培训就一起来了解一下深度学习的一些基础知识。

首先,什么是学习率?学习率(LearningRate,LR。常用η表示。)是一个超参数,考虑到损失梯度,它控制着我们在多大程度上调整网络的权重。值越低,沿着向下的斜率就越慢。

虽然这可能是一个好主意(使用低学习率),以确保我们不会错过任何局部最小值;但也有可能意味着我们将耗费很久的时间来收敛——特别是当我们陷入平坦区(plateauregion)的时候。

有没有更好的方法来确定学习率?在“训练神经网络的循环学习率(CyclicalLearningRates(CLR)forTrainingNeuralNetworks)”[4]的第3.3节中。

LeslieN.Smith认为,通过在每次迭代中以非常低的学习率来增加(线性或指数)的方式训练模型,可以估计好的学习率。

精益求精在这个关键时刻,我们已经讨论了学习率的全部内容和它的重要性,以及我们如何在开始训练模型时系统地达到使用价值。接下来,我们将讨论如何使用学习率来提高模型的性能。

一般看法通常情况下,当一个人设定学习率并训练模型时,只有等待学习率随着时间的推移而降低,并且模型会收敛。然而,随着梯度逐渐趋于稳定时,训练损失也变得难以改善。

在[3]中,Dauphin等人认为,尽可能地减少损失的难度来自于鞍点,而非局部极小值。迁移学习(TransferLearning)中的学习率在课程中,在解决AI问题时,非常重视利用预先训练的模型。

例如,在解决图像分类问题时,教授学生如何使用预先训练好的模型,如VGG或Resnet50,并将其连接到想要预测的任何图像数据集。

什么是差分学习?这是一种在训练期间为网络中的不同层设置不同的学习率的方法。这与人们通常如何配置学习率相反,即在训练期间在整个网络中使用相同的速率。

 

Logo

CSDN联合极客时间,共同打造面向开发者的精品内容学习社区,助力成长!

更多推荐