大众对人工智能认识的误区

很多计算机从业人员,对人工智能的理解 数据挖掘和深度学习。
另一部分对人工智能的理解,则多了知识图谱。

其实,人工智能的理论基础和技术分支,都极其广泛。具体详见下文。

揭开人工智能的神秘面纱 — 什么是人工智能

人工智能的概念

现阶段,对人工智能的概念还没有统一的定义。有兴趣的同学,可以网上找一下,在这里不累述。

人工智能的理论基础

哲学

起源于哲学的本体论,则是用来定义实体,以及建立 实体之间的关联关系。
目前,本体论主要用于知识图谱的建设。

数学
  • 逻辑:主要用在逻辑推理上面。涉及到 专家系统和知识图谱上面;
  • 计算:
  • 概率:贝叶斯网络,甚至是数据挖掘(机器学习),均涉及到概率;
经济学
  • 运筹学:在各种约束条件下,寻求最优解或者次优解。在任务调度方面广泛使用;
  • 博弈论:
神经科学
  • 神经网络/深度学习
心理学
  • 不是很了解
计算机科学

个人认为,就从工程的角度来讲,计算机科学和数学,是支撑人工智能最大的两个支柱。

  • 搜索算法:规划类的问题;
  • 图论:应用在知识图谱;
  • 编译原理(词法分析和语法分析):支持推理引擎语言的设计和开发;
  • 数据库理论:图数据库;
控制论
  • 不是很了解
语言学
  • 自然语言处理

人工智能简介

人工智能的历史

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

人工智能的产业结构

在这里插入图片描述

人工智能的智能层次

在这里插入图片描述

人工智能的参考框架

在这里插入图片描述
其实,智能运维的整体框架,最终也会跟这个框架非常的相似,在第四个系列里面,会有详细的介绍。

人工智能相关技术概述

人工智能的技术体系在这里插入图片描述

机器学习

概述

在这里插入图片描述

监督算法 — 分类算法
  • 线性分类
    在这里插入图片描述
  • 非线性分类
    在这里插入图片描述
监督算法 — 预测算法

在这里插入图片描述

无监督算法 — 聚类算法
  • K-means算法
    在这里插入图片描述
  • 基于密度的算法
    在这里插入图片描述

神经网络

经典的神经网络 — 全链接神经网络

在这里插入图片描述

递归神经网络

主要用在语音识别,经典的递归神经网络算法是 LSTM
在这里插入图片描述

卷积神经网络

主要用在图像识别
在这里插入图片描述

知识图谱

知识图谱的历史

在这里插入图片描述

知识图谱的技术框架

在这里插入图片描述

专家系统和知识图谱的区别

在这里插入图片描述

通用知识图谱和领域知识图谱的区别

在这里插入图片描述

贝叶斯网络

在这里插入图片描述

遗传算法

在这里插入图片描述
遗传算法,在人工智能领域的应用场景,就是 模型参数 调参。

混合智能系统

一个大型的人工智能解决方案,很难单靠一个技术分支就能够完成。以下展示的是 神经网络 + 专家系统的其中一种组织结构。
在这里插入图片描述

Logo

CSDN联合极客时间,共同打造面向开发者的精品内容学习社区,助力成长!

更多推荐