TensorFlow 工具包
图 1. TensorFlow 工具包层次结构。下表总结了不同层的用途:工具包说明Estimator (tf.estimator)高级 OOP API。tf.layers/tf.losses/tf.metrics用于常见模型组件的库。TensorFlow低级 APITensorFlow 由以下两个组件组成:图协议缓冲区执行(分布式)图的运行时这两个组件类似于 Java 编译器和 JVM。正如 JV
图 1. TensorFlow 工具包层次结构。
下表总结了不同层的用途:
工具包 | 说明 |
---|---|
Estimator (tf.estimator) | 高级 OOP API。 |
tf.layers/tf.losses/tf.metrics | 用于常见模型组件的库。 |
TensorFlow | 低级 API |
TensorFlow 由以下两个组件组成:
- 图协议缓冲区
- 执行(分布式)图的运行时
这两个组件类似于 Java 编译器和 JVM。正如 JVM 会实施在多个硬件平台(CPU 和 GPU)上一样,TensorFlow 也是如此。
您应该使用哪个 API?您应该使用能够解决问题的最高级抽象层。较高级别的抽象层更易于使用,但(设计方面)不够灵活。我们建议您先从最高级 API 入手,让所有组件正常运作起来。如果您希望在某些特殊建模方面能够更加灵活一些,则可以降低一个级别。请注意,每个级别都是使用低级 API 构建的,因此降低层次结构级别应该比较直观。
tf.estimator API
我们将使用 tf.estimator 来完成机器学习速成课程中的大部分练习。您在练习中所做的一切都可以在较低级别(原始)的 TensorFlow 中完成,但使用 tf.estimator 会大大减少代码行数。
tf.estimator 与 scikit-learn API 兼容。 scikit-learn 是极其热门的 Python 开放源代码机器学习库,拥有超过 10 万名用户,其中包括许多 Google 员工。
概括而言,以下是在 tf.estimator 中实现的线性回归程序的格式:
import tensorflow as tf
# Set up a linear classifier.
classifier = tf.estimator.LinearClassifier()
# Train the model on some example data.
classifier.train(input_fn=train_input_fn, steps=2000)
# Use it to predict.
predictions = classifier.predict(input_fn=predict_input_fn)
更多推荐
所有评论(0)